76 research outputs found

    Alien plants in urban nature reserves : from red-list species to future invaders?

    Get PDF
    Urban reserves, like other protected areas, aim to preserve species richness but conservation efforts in these protected areas are complicated by high proportions of alien species. We examined which environmental factors determine alien species presence in 48 city reserves of Prague, Czech Republic. We distinguished between archaeophytes, i.e. alien species introduced since the beginning of Neolithic agriculture up to 1500 A. D., and neophytes, i.e. modern invaders introduced after that date, with the former group separately analysed for endangered archaeophytes (listed as C1 and C2 categories on national red list). Archaeophytes responded positively to the presence of arable land that was in place at the time of the reserve establishment, and to a low altitudinal range. In addition to soil properties, neophytes responded to recent human activities with the current proportion of built-up area in reserves serving as a proxy. Endangered archaeophytes, with the same affinity for past arable land as other archaeophytes, were also supported by the presence of current shrubland in the reserve. This suggests that for endangered archaeophytes it may have been difficult to adapt to changing agricultural practices, and shrublands might act as a refugium for them. Forty-six of the 155 neophytes recorded in the reserves are classified as invasive. The reserves thus harbour 67% of the 69 invasive neophytes recorded in the country, and particularly worrisome is that many of the most invasive species are shrubs and trees, a life form that is known to account for widespread invasions with high impacts. Our results thus strongly suggest that in Prague nature reserves there is a high potential for future invasions

    Potential phytotoxic and shading effects of invasive Fallopia (Polygonaceae) taxa on the germination of dominant native species

    Get PDF
    Two species of the genus Fallopia (F. sachalinensis, F. japonica, Polygonaceae) native to Asia, and their hybrid (F. ×bohemica), belong to the most noxious plant invaders in Europe. They impact highly on invaded plant communities, resulting in extremely poor native species richness. The low number of native species in invaded communities points to the possible existence of mechanisms suppressing their germination. In this study we assessed, under laboratory conditions, whether there are phytotoxic effects of the three Fallopia congeners on seed germination of three target species: two native species commonly growing in habitats that are often invaded by Fallopia taxa (Urtica dioica, Calamagrostis epigejos), and Lepidium sativum, a species commonly used in allelopathic bioassays as a control. Since Fallopia taxa form dense stands with high cover, we included varying light conditions as an additional factor, to simulate the effects of shading by leaf canopy on germination. The effects of aqueous extracts (2.5%, 5.0%, and 0% as a control) from dry leaves and rhizomes of the Fallopia congeners on germination of the target species were thus studied under two light regimes, simulating full daylight (white light) and light filtered through canopy (green light), and in dark as a control regime. Rhizome extracts did not affect germination. Light treatments yielded inconclusive results, indicating that poor germination and establishment of species in invaded stands is unlikely to be caused by shading alone. However, we found a pronounced phytotoxic effect of leaf extracts of Fallopia taxa, more so at 5.0% than 2.5% extract concentration. Fallopia sachalinensis exerted the largest negative effect on the germination of Urtica dioica, F. ×bohemica on that of C. epigejos, and F. japonica had invariably the lowest inhibitory effect on all test species. The weak phytotoxic effect of F. japonica corresponds to the results of previous studies that found this species to be generally a weaker competitor than its two congeners. Although these results do not necessarily provide direct evidence for allelopathic effects in the field, we demonstrate the potential phytotoxic effect of invasive Fallopia taxa on the germination of native species. This suggests that allelopathy may play a role in the impact of Fallopia invasion on species diversity of invaded communities

    Potential phytotoxic and shading effects of invasive Fallopia (Polygonaceae) taxa on the germination of dominant native species

    Get PDF
    Two species of the genus Fallopia (F. sachalinensis, F. japonica, Polygonaceae) native to Asia, and their hybrid (F. ×bohemica), belong to the most noxious plant invaders in Europe. They impact highly on invaded plant communities, resulting in extremely poor native species richness. The low number of native species in invaded communities points to the possible existence of mechanisms suppressing their germination. In this study we assessed, under laboratory conditions, whether there are phytotoxic effects of the three Fallopia congeners on seed germination of three target species: two native species commonly growing in habitats that are often invaded by Fallopia taxa (Urtica dioica, Calamagrostis epigejos), and Lepidium sativum, a species commonly used in allelopathic bioassays as a control. Since Fallopia taxa form dense stands with high cover, we included varying light conditions as an additional factor, to simulate the effects of shading by leaf canopy on germination. The effects of aqueous extracts (2.5%, 5.0%, and 0% as a control) from dry leaves and rhizomes of the Fallopia congeners on germination of the target species were thus studied under two light regimes, simulating full daylight (white light) and light filtered through canopy (green light), and in dark as a control regime. Rhizome extracts did not affect germination. Light treatments yielded inconclusive results, indicating that poor germination and establishment of species in invaded stands is unlikely to be caused by shading alone. However, we found a pronounced phytotoxic effect of leaf extracts of Fallopia taxa, more so at 5.0% than 2.5% extract concentration. Fallopia sachalinensis exerted the largest negative effect on the germination of Urtica dioica, F. ×bohemica on that of C. epigejos, and F. japonica had invariably the lowest inhibitory effect on all test species. The weak phytotoxic effect of F. japonica corresponds to the results of previous studies that found this species to be generally a weaker competitor than its two congeners. Although these results do not necessarily provide direct evidence for allelopathic effects in the field, we demonstrate the potential phytotoxic effect of invasive Fallopia taxa on the germination of native species. This suggests that allelopathy may play a role in the impact of Fallopia invasion on species diversity of invaded communities

    When are eradication campaigns successful? A test of common assumptions

    Get PDF
    Eradication aims at eliminating populations of alien organisms from an area. Since not all eradications are successful, several factors have been proposed in the literature (mainly by referring to case studies) to be crucial for eradication success, such as infestation size or reaction time. To our knowledge, however, no study has statistically evaluated which factors affect eradication success and attempted to determine their relative importance. We established a unique global dataset on 136 eradication campaigns against 75 species (invasive alien invertebrates, plants and plant pathogens) and statistically tested whether the following factors, proposed by others were significantly related to eradication success: (1) the reaction time between the arrival/detection of the organism and the start of the eradication campaign; (2) the spatial extent of the infestation; (3) the level of biological knowledge of the organism; and (4) insularity. Of these, only the spatial extent of the infestation was significantly related to the eradication outcome: local campaigns were more successful than regional or national campaigns. Reaction time, the level of knowledge and insularity were all unrelated to eradication success. Hence, some factors suggested as being crucial may be less important than previously thought, at least for the organisms tested here. We found no differences in success rates among taxonomic groups or geographic regions. We recommend that eradication measures should generally concentrate on the very early phase of invasions when infestations are still relatively smal

    Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates

    Get PDF
    Aim To provide the first comparative overview on the current numbers of alien species that invade representative European terrestrial and freshwater habitats for a range of taxonomic groups. Location Europe. Methods Numbers of naturalized alien species of plants, insects, herptiles, birds and mammals occurring in 10 habitats defined according to the European Nature Information System (EUNIS) were obtained from 115 regional data sets. Only species introduced after ad 1500 were considered. Data were analysed by ANCOVA and regression trees to assess whether differences exist among taxonomic groups in terms of their habitat affinity, and whether the pattern of occurrence of alien species in European habitats interacts with macroecological factors such as insu- larity, latitude or area. Results The highest numbers of alien plant and insect species were found in human-made, urban or cultivated habitats; if controlled for habitat area in the region, wetland and riparian habitats appeared to support relatively high numbers of alien plant species too. Invasions by vertebrates were more evenly distributed among habitats, with aquatic and riparian, woodland and cultivated land most invaded. Mires, bogs and fens, grassland, heathland and scrub were generally less invaded. Habitat and taxonomic group explained most variation in the proportions of alien species occurring in individual habitats related to the total number of alien species in a region, and the basic pattern determined by these factors was fine-tuned by geographical variables, namely by the mainland–island contrast and latitude, and differed among taxonomic groups. Main conclusions There are two ecologically distinct groups of alien species (plants and insects versus vertebrates) with strikingly different habitat affinities. Invasions by these two contrasting groups are complementary in terms of habitat use, which makes an overall assessment of habitat invasions in Europe possible. Since numbers of naturalized species in habitats are correlated among taxa within these two groups, the data collected for one group of vertebrates, for example, could be used to estimate the habitat-specific numbers of alien species for other vertebrate groups with reasonable precision, and the same holds true for insects and plants.Peer reviewe

    Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasion patterns

    Get PDF
    A complete list of all alien taxa ever recorded in the flora of the Czech Republic is presented as an update of the original checklist published in 2002. New data accumulated in the last decade are incorporated and the listing and status of some taxa are reassessed based on improved knowledge. Alien flora of the Czech Republic consists of 1454 taxa listed with information on their taxonomic position, life history, geographic origin (or mode of origin, distinguishing anecophyte and hybrid), invasive status (casual; naturalized but not invasive; invasive), residence time status (archaeophyte vs neophyte), mode of introduction into the country (accidental, deliberate), and date of the first record. Additional information on species performance that was not part of the previous catalogue, i.e. on the width of species’ habitat niches, their dominance in invaded communities, and impact, is provided. The Czech alien flora consists of 350 (24.1%) archaeophytes and 1104 (75.9%) neophytes. The increase in the total number of taxa compared to the previous catalogue (1378) is due to addition of 151 taxa and removal of 75 (39 archaeophytes and 36 neophytes), important part of the latter being the reclassification of 41 taxa as native, mostly based on archaeobotanical evidence. The additions represent taxa newly recorded since 2002 and reported in the national literature; taxa resulting from investigation of sources omitted while preparing the previous catalogue; redetermination of previously reported taxa; reassessment of some taxa traditionally considered native for which the evidence suggests the opposite; and inclusion of intraspecific taxa previously not recognized in the flora. There are 44 taxa on the list that are reported in the present study for the first time as aliens introduced to the Czech Republic or escaped from cultivation.Práce přináší úplný seznam nepůvodních taxonů zaznamenaných na území České republiky; je aktualizací a doplněním předchozího seznamu publikovaného v roce 2002. Zahrnuje nové údaje shromážděné za poslední desetiletí a přehodnocuje zařazení a status některých druhů, vyplývající z rozvoje taxonomického poznání. Nepůvodní flóra České republiky zahrnuje 1454 taxonů, které jsou uvedeny v Apendixu 2 s informacemi o taxonomické příslušnosti, životní formě, oblasti původu, invazním statusu (zda jde o druh přechodně zavlečený, naturalizovaný avšak neinvazní, nebo invazní), charakteru výskytu v krajině, době zavlečení (archeofyt nebo neofyt), způsobu introdukce do země a u neofytů o datu prvního nálezu. Oproti původnímu katalogu je uveden počet typů biotopů, ve kterých se druh vyskytuje, pokryvnost v rostlinných společenstvech a impakt. Podíl zavlečených druhů v české flóře je značný: tvoří jej 350 (24,1%) archeofytů a 1104 (75.9%) neofytů. Nárůst počtu taxonů oproti původnímu katalogu, který uváděl 1378 taxonů, vyplývá z toho, že bylo přidáno 151 taxonů. Celkem 75 (39 archeofytů a 36 neofytů) bylo naproti tomu vypuštěno; značná část tohoto počtu jde na vrub přeřazení 41 taxonů mezi původní druhy, a to vesměs na základě archeobotanických dokladů. Přírůstky na seznamu představují taxony nově objevené a uvedené v botanické literatuře od roku 2002, taxony zařazené na základě excerpce dříve opominutých zdrojů či revize zdrojů použitých, nebo přehodnocení statusu některých taxonů tradičně považovaných za původní. Vněkterých případech jde o infraspecifické taxony, které nebyly dříve v české flóře rozeznávány. Seznam obsahuje 44 taxonů, které jsou uváděny pro Českou republiku poprvé jako zavlečené, nebo pro něž je podán první důkaz o jejich zplaňování

    Alien Plants Introduced by Different Pathways Differ in Invasion Success: Unintentional Introductions as a Threat to Natural Areas

    Get PDF
    BACKGROUND: Understanding the dimensions of pathways of introduction of alien plants is important for regulating species invasions, but how particular pathways differ in terms of post-invasion success of species they deliver has never been rigorously tested. We asked whether invasion status, distribution and habitat range of 1,007 alien plant species introduced after 1500 A.D. to the Czech Republic differ among four basic pathways of introduction recognized for plants. PRINCIPAL FINDINGS: Pathways introducing alien species deliberately as commodities (direct release into the wild; escape from cultivation) result in easier naturalization and invasion than pathways of unintentional introduction (contaminant of a commodity; stowaway arriving without association with it). The proportion of naturalized and invasive species among all introductions delivered by a particular pathway decreases with a decreasing level of direct assistance from humans associated with that pathway, from release and escape to contaminant and stowaway. However, those species that are introduced via unintentional pathways and become invasive are as widely distributed as deliberately introduced species, and those introduced as contaminants invade an even wider range of seminatural habitats. CONCLUSIONS: Pathways associated with deliberate species introductions with commodities and pathways whereby species are unintentionally introduced are contrasting modes of introductions in terms of invasion success. However, various measures of the outcome of the invasion process, in terms of species' invasion success, need to be considered to accurately evaluate the role of and threat imposed by individual pathways. By employing various measures we show that invasions by unintentionally introduced plant species need to be considered by management as seriously as those introduced by horticulture, because they invade a wide range of seminatural habitats, hence representing even a greater threat to natural areas

    Effects of the Training Dataset Characteristics on the Performance of Nine Species Distribution Models: Application to Diabrotica virgifera virgifera

    Get PDF
    Many distribution models developed to predict the presence/absence of invasive alien species need to be fitted to a training dataset before practical use. The training dataset is characterized by the number of recorded presences/absences and by their geographical locations. The aim of this paper is to study the effect of the training dataset characteristics on model performance and to compare the relative importance of three factors influencing model predictive capability; size of training dataset, stage of the biological invasion, and choice of input variables. Nine models were assessed for their ability to predict the distribution of the western corn rootworm, Diabrotica virgifera virgifera, a major pest of corn in North America that has recently invaded Europe. Twenty-six training datasets of various sizes (from 10 to 428 presence records) corresponding to two different stages of invasion (1955 and 1980) and three sets of input bioclimatic variables (19 variables, six variables selected using information on insect biology, and three linear combinations of 19 variables derived from Principal Component Analysis) were considered. The models were fitted to each training dataset in turn and their performance was assessed using independent data from North America and Europe. The models were ranked according to the area under the Receiver Operating Characteristic curve and the likelihood ratio. Model performance was highly sensitive to the geographical area used for calibration; most of the models performed poorly when fitted to a restricted area corresponding to an early stage of the invasion. Our results also showed that Principal Component Analysis was useful in reducing the number of model input variables for the models that performed poorly with 19 input variables. DOMAIN, Environmental Distance, MAXENT, and Envelope Score were the most accurate models but all the models tested in this study led to a substantial rate of mis-classification

    When are eradication campaigns successful? A test of common assumptions

    Get PDF
    Eradication aims at eliminating populations of alien organisms from an area. Since not all eradications are successful, several factors have been proposed in the literature (mainly by referring to case studies) to be crucial for eradication success, such as infestation size or reaction time. To our knowledge, however, no study has statistically evaluated which factors affect eradication success and attempted to determine their relative importance. We established a unique global dataset on 136 eradication campaigns against 75 species (invasive alien invertebrates, plants and plant pathogens) and statistically tested whether the following factors, proposed by others were significantly related to eradication success: (1) the reaction time between the arrival/detection of the organism and the start of the eradication campaign; (2) the spatial extent of the infestation; (3) the level of biological knowledge of the organism; and (4) insularity. Of these, only the spatial extent of the infestation was significantly related to the eradication outcome: local campaigns were more successful than regional or national campaigns. Reaction time, the level of knowledge and insularity were all unrelated to eradication success. Hence, some factors suggested as being crucial may be less important than previously thought, at least for the organisms tested here. We found no differences in success rates among taxonomic groups or geographic regions. We recommend that eradication measures should generally concentrate on the very early phase of invasions when infestations are still relatively small
    corecore