49 research outputs found

    Modeling the Geographic Distribution of \u3ci\u3eIxodes scapularis\u3c/i\u3e and \u3ci\u3eIxodes pacificus\u3c/i\u3e (Acari: Ixodidae) in the Contiguous United States

    Get PDF
    In addition to serving as vectors of several other human pathogens, the black-legged tick, Ixodes scapularis Say, and western black-legged tick, Ixodes pacificus Cooley and Kohls, are the primary vectors of the spirochete (Borrelia burgdorferi) that causes Lyme disease, the most common vector-borne disease in the United States. Over the past two decades, the geographic range of I. pacificus has changed modestly while, in contrast, the I. scapularis range has expanded substantially, which likely contributes to the concurrent expansion in the distribution of human Lyme disease cases in the Northeastern, North-Central and Mid-Atlantic states. Identifying counties that contain suitable habitat for these ticks that have not yet reported established vector populations can aid in targeting limited vector surveillance resources to areas where tick invasion and potential human risk are likely to occur. We used county-level vector distribution information and ensemble modeling to map the potential distribution of I. scapularis and I. pacificus in the contiguous United States as a function of climate, elevation, and forest cover. Results show that I. pacificus is currently present within much of the range classified by our model as suitable for establishment. In contrast, environmental conditions are suitable for I. scapularis to continue expanding its range into northwestern Minnesota, central and northern Michigan, within the Ohio River Valley, and inland from the southeastern and Gulf coasts. Overall, our ensemble models show suitable habitat for I. scapularis in 441 eastern counties and for I. pacificus in 11 western counties where surveillance records have not yet supported classification of the counties as established

    Evaluating Simplistic Methods to Understand Current Distributions and Forecast Distribution Changes Under Climate Change Scenarios: An Example With Coypu (Myocastor coypus)

    Get PDF
    Invasive species provide a unique opportunity to evaluate factors controlling biogeographic distributions; we can consider introduction success as an experiment testing suitability of environmental conditions. Predicting potential distributions of spreading species is not easy, and forecasting potential distributions with changing climate is even more difficult. Using the globally invasive coypu (Myocastor coypus [Molina, 1782]), we evaluate and compare the utility of a simplistic ecophysiological based model and a correlative model to predict current and future distribution. The ecophysiological model was based on winter temperature relationships with nutria survival. We developed correlative statistical models using the Software for Assisted Habitat Modeling and biologically relevant climate data with a global extent. We applied the ecophysiological based model to several global circulation model (GCM) predictions for mid-century. We used global coypu introduction data to evaluate these models and to explore a hypothesized physiological limitation, finding general agreement with known coypu distribution locally and globally and support for an upper thermal tolerance threshold. Global circulation model based model results showed variability in coypu predicted distribution among GCMs, but had general agreement of increasing suitable area in the USA. Our methods highlighted the dynamic nature of the edges of the coypu distribution due to climate non-equilibrium, and uncertainty associated with forecasting future distributions. Areas deemed suitable habitat, especially those on the edge of the current known range, could be used for early detection of the spread of coypu populations for management purposes. Combining approaches can be beneficial to predicting potential distributions of invasive species now and in the future and in exploring hypotheses of factors controlling distributions

    Show me the numbers: what data currently exist for non‐native species in the USA?

    Get PDF
    Non‐native species continue to be introduced to the United States from other countries via trade and transportation, creating a growing need for early detection and rapid response to new invaders. It is therefore increasingly important to synthesize existing data on non‐native species abundance and distributions. However, no comprehensive analysis of existing data has been undertaken for non‐native species, and there have been few efforts to improve collaboration. We therefore conducted a survey to determine what datasets currently exist for non‐native species in the US from county, state, multi‐state region, national, and global scales. We identified 319 datasets and collected metadata for 79% of these. Through this study, we provide a better understanding of extant non‐native species datasets and identify data gaps (ie taxonomic, spatial, and temporal) to help guide future survey, research, and predictive modeling efforts

    The Art and Science of Weed Mapping

    Get PDF
    Land managers need cost-effective and informative tools for non-native plant species management. Many local, state, and federal agencies adopted mapping systems designed to collect comparable data for the early detection and monitoring of non-native species. We compared mapping information to statistically rigorous, plot-based methods to better understand the benefits and compatibility of the two techniques. Mapping non-native species locations provided a species list, associated species distributions, and infested area for subjectively selected survey sites. The value of this information may be compromised by crude estimates of cover and incomplete or biased estimations of species distributions. Incorporating plot-based assessments guided by a stratified-random sample design provided a less biased description of non-native species distributions and increased the comparability of data over time and across regions for the inventory, monitoring, and management of non-native and native plant species

    Modeling the distributions of tegu lizards in native and potential invasive ranges

    Get PDF
    Invasive reptilian predators can have substantial impacts on native species and ecosystems. Tegu lizards are widely distributed in South America east of the Andes, and are popular in the international live animal trade. Two species are established in Florida (U.S.A.)-Salvator merianae (Argentine black and white tegu) and Tupinambis teguixin sensu lato (gold tegu)-and a third has been recorded there-S. rufescens (red tegu). We built species distribution models (SDMs) using 5 approaches (logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy) based on data from the native ranges. We then projected these models to North America to develop hypotheses for potential tegu distributions. Our results suggest that much of the southern United States and northern MĂ©xico probably contains suitable habitat for one or more of these tegu species. Salvator rufescens had higher habitat suitability in semi-arid areas, whereas S. merianae and T. teguixin had higher habitat suitability in more mesic areas. We propose that Florida is not the only state where these taxa could become established, and that early detection and rapid response programs targeting tegu lizards in potentially suitable habitat elsewhere in North America could help prevent establishment and abate negative impacts on native ecosystems.Fil: Jarnevich, Catherine S.. U.s. Geological Survey; Estados UnidosFil: Hayes, Mark A.. Cherokee Nation Technologies; Estados UnidosFil: Fitzgerald, Lee A.. Department Of Wildlife And Fisheries Sciences; Estados UnidosFil: Yackel Adams, Amy A.. U.s. Geological Survey; Estados UnidosFil: Falk, Bryan G.. U.s. Geological Survey; Estados Unidos. National Park Service; Estados UnidosFil: Collier, Michelle A. M.. National Park Service; Estados Unidos. U.s. Geological Survey; Estados UnidosFil: Bonewell, Lea` R.. U.s. Geological Survey; Estados UnidosFil: Klug, Page E.. U.s. Geological Survey; Estados Unidos. U.S. Department of Agriculture APHIS, Wildlife Services, National Wildlife Research Center, North Dakota Field Station; Estados UnidosFil: Naretto, Sergio. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Diversidad y EcologĂ­a Animal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto de Diversidad y EcologĂ­a Animal; ArgentinaFil: Reed, Robert N.. U.s. Geological Survey; Estados Unido

    Iterative Near-Term Ecological Forecasting: Needs, Opportunities, And Challenges

    Get PDF
    Two foundational questions about sustainability are “How are ecosystems and the services they provide going to change in the future?” and “How do human decisions affect these trajectories?” Answering these questions requires an ability to forecast ecological processes. Unfortunately, most ecological forecasts focus on centennial-scale climate responses, therefore neither meeting the needs of near-term (daily to decadal) environmental decision-making nor allowing comparison of specific, quantitative predictions to new observational data, one of the strongest tests of scientific theory. Near-term forecasts provide the opportunity to iteratively cycle between performing analyses and updating predictions in light of new evidence. This iterative process of gaining feedback, building experience, and correcting models and methods is critical for improving forecasts. Iterative, near-term forecasting will accelerate ecological research, make it more relevant to society, and inform sustainable decision-making under high uncertainty and adaptive management. Here, we identify the immediate scientific and societal needs, opportunities, and challenges for iterative near-term ecological forecasting. Over the past decade, data volume, variety, and accessibility have greatly increased, but challenges remain in interoperability, latency, and uncertainty quantification. Similarly, ecologists have made considerable advances in applying computational, informatic, and statistical methods, but opportunities exist for improving forecast-specific theory, methods, and cyberinfrastructure. Effective forecasting will also require changes in scientific training, culture, and institutions. The need to start forecasting is now; the time for making ecology more predictive is here, and learning by doing is the fastest route to drive the science forward

    Challenges of Predicting the Potential Distribution of a Slow-spreading Invader: A Habitat Suitability Map for an Invasive Riparian Tree

    Get PDF
    Understanding the potential spread of invasive species is essential for land managers to prevent their establishment and restore impacted habitat. Habitat suitability modeling provides a tool for researchers and managers to understand the potential extent of invasive species spread. Our goal was to use habitat suitability modeling to map potential habitat of the riparian plant invader, Russian olive (Elaeagnus angustifolia). Russian olive has invaded riparian habitat across North America and is continuing to expand its range. We compiled 11 disparate datasets for Russian olive presence locations (n = 1,051 points and 139 polygons) in the western US and used Maximum entropy (Maxent) modeling to develop two habitat suitability maps for Russian olive in the western United States: one with coarse-scale water data and one with fine-scale water data. Our models were able to accurately predict current suitable Russian olive habitat (Coarse model: training AUC = 0.938, test AUC = 0.907; Fine model: training AUC = 0.923, test AUC = 0.885). Distance to water was the most important predictor for Russian olive presence in our coarse-scale water model, but it was only the fifth most important variable in the fine-scale model, suggesting that when water bodies are considered on a fine scale, Russian olive does not necessarily rely on water. Our model predicted that Russian olive has suitable habitat further west from its current distribution, expanding into the west coast and central North America. Our methodology proves useful for identifying potential future areas of invasion. Model results may be influenced by locations of cultivated individuals and sampling bias. Further study is needed to examine the potential for Russian olive to invade beyond its current range. Habitat suitability modeling provides an essential tool for enhancing our understanding of invasive species spread

    CLIMATE MATCHING AS A TOOL FOR PREDICTING POTENTIAL NORTH AMERICAN SPREAD OF BROWN TREESNAKES

    Get PDF
    Climate matching identifies extralimital destinations that could be colonized by a potential invasive species on the basis of similarity to climates found in the species’ native range. Climate is a proxy for the factors that determine whether a population will reproduce enough to offset mortality. Previous climate matching models (e.g., Genetic Algorithm for Rule-set Prediction [GARP]) for brown treesnakes (Boiga irregularis) were unsatisfactory, perhaps because the models failed to allow different combinations of climate attributes to influence a species’ range limits in different parts of the range. Therefore, we explored the climate space described by bivariate parameters of native range temperature and rainfall, allowing up to two months of aestivation in the warmer portions of the range, or four months of hibernation in temperate climes. We found colonization area to be minimally sensitive to assumptions regarding hibernation temperature thresholds. Although brown treesnakes appear to be limited by dry weather in the interior of Australia, aridity rarely limits potential distribution in most of the world. Potential colonization area in North America is limited primarily by cold. Climatically suitable portions of the United States (US) mainland include the Central Valley of California, mesic patches in the Southwest, and the southeastern coastal plain from Texas to Virginia

    Not so Normal Normals: Species Distribution Model Results are Sensitive to Choice of Climate Normals and Model Type

    No full text
    Species distribution models have many applications in conservation and ecology, and climate data are frequently a key driver of these models. Often, correlative modeling approaches are developed with readily available climate data; however, the impacts of the choice of climate normals is rarely considered. Here, we produced species distribution models for five disparate species using four different modeling algorithms and compared results between two different, but overlapping, climate normals time periods. Although the correlation structure among climate predictors did not change between the time periods, model results were sensitive to both baseline climate period and model method, even with model parameters specifically tuned to a species. Each species and each model type had at least one difference in variable retention or relative ranking with the change in climate time period. Pairwise comparisons of spatial predictions were also different, ranging from a low of 1.6% for climate period differences to a high of 25% for algorithm differences. While uncertainty from model algorithm selection is recognized as an important source of uncertainty, the impact of climate period is not commonly assessed. These uncertainties may affect conservation decisions, especially when projecting to future climates, and should be evaluated during model development
    corecore