24 research outputs found

    Untargeted metabolomics to evaluate antifungal mechanism: a study of Cophinforma mamane and Candida albicans interaction

    Get PDF
    Microbial interactions between filamentous fungi and yeast are still not fully understood. To evaluate a potential antifungal activity of a filamentous fungus while highlighting metabolomic changes, co-cultures between an endophytic strain of Cophinforma mamane (CM) and Candida albicans (CA) were performed. The liquid cultures were incubated under static conditions and metabolite alterations during the course were investigated by ultra-performance liquid chromatography–tandem mass spectrophotometry (UPLC–MS/MS). Results were analyzed using MS-DIAL, MS-FINDER, METLIN, Xcalibur, SciFinder, and MetaboAnalyst metabolomics platforms. The metabolites associated with catabolic processes, including the metabolism of branched-chain amino acids, carnitine, and phospholipids were upregulated both in the mono and co-cultures, indicating fungal adaptability to environmental stress. Several metabolites, including C20 sphinganine 1-phosphate, myo-inositol, farnesol, gamma-undecalactone, folinic acid, palmitoleic acid, and MG (12:/0:0/0:0) were not produced by CA during co-culture with CM, demonstrating the antifungal mechanism of CM. Our results highlight the crucial roles of metabolomics studies to provide essential information regarding the antifungal mechanism of C. mamane against C. albicans, especially when the lost/undetected metabolites are involved in fungal survival and pathogenicity

    Microbial community associated with the crustose lichen Rhizocarpon geographicum L. ( DC .) living on oceanic seashore: A large source of diversity revealed by using multiple isolation methods

    No full text
    International audienceRecently, the study of the interactions within a microcosm between hosts and their associated microbial communities drew an unprecedented interest arising from the holobiont concept. Lichens, a symbiotic association between a fungus and an alga, are redefined as complex ecosystems considering the tremendous array of associated microorganisms that satisfy this concept. The present study focuses on the diversity of the microbiota associated with the seashore located lichen Rhizocarpon geographicum, recovered by different culture-dependent methods. Samples harvested from two sites allowed the isolation and the molecular identification of 68 fungal isolates distributed in 43 phylogenetic groups, 15 bacterial isolates distributed in five taxonomic groups and three microalgae belonging to two species. Moreover, for 12 fungal isolates belonging to 10 different taxa, the genus was not described in GenBank. These fungal species have never been sequenced or described and therefore non-studied. All these findings highlight the novel and high diversity of the microflora associated with R. geographicum. While many species disappear every day, this work suggests that coastal and wild environments still contain an unrevealed variety to offer and that lichens constitute a great reservoir of new microbial taxa which can be recovered by multiplying the culture-dependent techniques

    Fungal communities associated with Evernia prunastri , Ramalina fastigiata and Pleurosticta acetabulum : Three epiphytic lichens potentially active against Candida biofilms

    No full text
    International audienceFungal communities associated to three epiphytic lichens active against Candida, were investigated using culture-based methods We hypothetized that associated fungi would contribute to lichens activities. The ability of specific fungi to grow inside or outside lichens was investigated. To detect biogenesis pathways involved in the production of secondary metabolites, genes coding for nonribosomal peptide synthetase (NRPS) and polyketide synthase I (PKS I) were screened by PCR from fungal DNA extracts. Both endo and epilichenic communities were isolated from two fructicose (Evernia prunastri and Ramalina fastigiata) and one foliose (Pleurosticta acetabulum) lichens. A total of 86 endolichenic and 114 epilichenic isolates were obtained, corresponding to 18 and 24 phylogenetic groups respectively suggesting a wide diversity of fungi. The communities and the species richness were distinct between the three lichens which hosted potentially new fungal species. Additionally, the endo- and epilichenic communities differed in their composition: Sordariomycetes were particularly abundant among endolichenic fungi and Dothideomycetes among epilichenic fungi. Only a few fungi colonized both habitats, such as S. fimicola, Cladosporium sp1 and Botrytis cinerea. Interestingly, Nemania serpens (with several genotypes) was the most abundant endolichenic fungus (53% of isolates) and was shared by the three lichens. Finally, 12 out of 36 phylogenetic groups revealed the presence of genes coding for nonribosomal peptide synthetase (NRPs) and polyketide synthase I (PKS I). This study shows that common lichens are reservoirs of diverse fungal communities, which could potentially contribute to global activity of the lichen and, therefore, deserve to be isolated for further chemical studies

    Do Host Plant and Associated Ant Species Affect Microbial Communities in Myrmecophytes?

    Get PDF
    International audienceAnt-associated microorganisms can play crucial and often overlooked roles, and given the diversity of interactions that ants have developed, the study of the associated microbiomes is of interest. We focused here on specialist plant-ant species of the genus Allomerus that grow a fungus to build galleries on their host-plant stems. Allomerus-inhabited domatia, thus, might be a rich arena for microbes associated with the ants, the plant, and the fungus. We investigated the microbial communities present in domatia colonised by four arboreal ants: Allomerus decemarticulatus, A. octoarticulatus, A. octoarticulatus var. demerarae, and the non-fungus growing plant-ant Azteca sp. cf. depilis, inhabiting Hirtella physophora or Cordia nodosa in French Guiana. We hypothesized that the microbial community will differ among these species. We isolated microorganisms from five colonies of each species, sequenced the 16S rRNA or Internal TranscribedSpacer (ITS) regions, and described both the alpha and beta diversities. We identified 69 microbial taxa, which belong to five bacterial and two fungal phyla. The most diverse phyla were Proteobacteria and Actinobacteria. The microbial community of Azteca cf. depilis and Allomerus spp. differed in composition and richness. Geographical distance affected microbial communities and richness but plant species did not. Actinobacteria were only associated with Allomerus sp

    Do Host Plant and Associated Ant Species Affect Microbial Communities in Myrmecophytes?

    No full text
    International audienceAnt-associated microorganisms can play crucial and often overlooked roles, and given the diversity of interactions that ants have developed, the study of the associated microbiomes is of interest. We focused here on specialist plant-ant species of the genus Allomerus that grow a fungus to build galleries on their host-plant stems. Allomerus-inhabited domatia, thus, might be a rich arena for microbes associated with the ants, the plant, and the fungus. We investigated the microbial communities present in domatia colonised by four arboreal ants: Allomerus decemarticulatus, A. octoarticulatus, A. octoarticulatus var. demerarae, and the non-fungus growing plant-ant Azteca sp. cf. depilis, inhabiting Hirtella physophora or Cordia nodosa in French Guiana. We hypothesized that the microbial community will differ among these species. We isolated microorganisms from five colonies of each species, sequenced the 16S rRNA or Internal TranscribedSpacer (ITS) regions, and described both the alpha and beta diversities. We identified 69 microbial taxa, which belong to five bacterial and two fungal phyla. The most diverse phyla were Proteobacteria and Actinobacteria. The microbial community of Azteca cf. depilis and Allomerus spp. differed in composition and richness. Geographical distance affected microbial communities and richness but plant species did not. Actinobacteria were only associated with Allomerus sp

    Specific, non-nutritional association between an ascomycete fungus and Allomerus plant-ants

    No full text
    Ant–fungus associations are well known from attine ants, whose nutrition is based on a symbiosis with basidiomycete fungi. Otherwise, only a few non-nutritional ant–fungus associations have been recorded to date. Here we focus on one of these associations involving Allomerus plant-ants that build galleried structures on their myrmecophytic hosts in order to ambush prey. We show that this association is not opportunistic because the ants select from a monophyletic group of closely related fungal haplotypes of an ascomycete species from the order Chaetothyriales that consistently grows on and has been isolated from the galleries. Both the ants' behaviour and an analysis of the genetic population structure of the ants and the fungus argue for host specificity in this interaction. The ants' behaviour reveals a major investment in manipulating, growing and cleaning the fungus. A molecular analysis of the fungus demonstrates the widespread occurrence of one haplotype and many other haplotypes with a lower occurrence, as well as significant variation in the presence of these fungal haplotypes between areas and ant species. Altogether, these results suggest that such an interaction might represent an as-yet undescribed type of specific association between ants and fungus in which the ants cultivate fungal mycelia to strengthen their hunting galleries

    Metabotyping of Andean pseudocereals and characterization of emerging mycotoxins

    No full text
    International audiencePseudocereals are best known for three crops derived from the Andes: quinoa (Chenopodium quinoa), canihua (C. pallidicaule), and kiwicha (Amaranthus caudatus). Their grains are recognized for their nutritional benefits; however, there is a higher level of polyphenism. Meanwhile, the chemical food safety of pseudocereals remains poorly documented. Here, we applied untargeted and targeted metabolomics approaches by LC-MS to achieve both: i) a comprehensive chemical mapping of pseudocereal samples collected in the Andes; and ii) a quantification of their contents in emerging mycotoxins. An inventory of the fungal community was also realized to better know the fungi present in these grains. Metabotyping permitted to add new insights into the chemotaxonomy of pseudocereals, confirming the previously established phylotranscriptomic clades. Sixteen samples from Peru (out of 27) and one from France (out of one) were contaminated with Beauvericin, an emerging mycotoxin. Several mycotoxigenic fungi were detected, including Aspergillus sp., Penicillium sp., and Alternaria sp

    How histone deacetylase inhibitors alter the secondary metabolites of Botryosphaeria mamane, an endophytic fungus isolated from Bixa orellana

    No full text
    Fungi are talented organisms able to produce several natural products with a wide range of structural and pharmacological activities. The conventional fungal cultivation used in laboratories is too poor to mimic the natural habitats of fungi, and this can partially explain why most of the genes responsible for the production of metabolites are transcriptionally silenced. The use of Histone Deacetylase inhibitors (HDACis) to perturb fungal secondary biosynthetic machinery has proven to be an effective approach for discovering new fungal natural products. The present study relates the effects of suberoylanilide hydroxamic acid (SAHA) and sodium valproate (VS) on the metabolome of Botryosphaeria mamane, an endophytic fungus isolated from Bixa orellana L. UHPLC/HR‐MS analysis, integrated with four metabolomics tools: MS‐DIAL, MS‐FINDER, MetaboAnalyst and GNPS molecular networking, was established. This study highlighted that SAHA and VS changed metabolites in B. mamane, causing upregulation and downregulation of metabolites production. In addition, twelve compounds were detected in the extracts as metabolites structurally correlated to SAHA, indicating its important reactivity in the medium or its metabolism by the fungus. An addition of SAHA induced the production of eight metabolites while VS induced only two metabolites undetected in the control strain. This result illustrates the importance of adding HDACis to a fungal culture in order to induce metabolite production.Revisión por pares

    Limitation of gene flow by distance in the common yellow jasmine (Chrysojasminum fruticans, Oleaceae): implications for the study of its mating strategies

    No full text
    International audienceThe common yellow jasmine (Chrysojasminum fruticans; Oleaceae) is a distylous shrub occurring in the wild in southwestern Europe and the Mediterranean Basin. Little is known about the genetics of its populations and such information would be necessary to investigate its spread and mating strategies. Here, the organization of its genetic diversity was investigated among and between 13 populations from southern France, including a 35-years old experimental plot ('CEFE', CNRS Montpellier). Markers (microsatellites and indels) were developed to screen polymorphisms in nuclear, chloroplast, and mitochondrial genomes. Low linkage disequilibrium was observed between chloroplast and mitochondrial haplotypes likely resulting from paternal leaks in their inheritance as reported in other species of tribe Jasmineae. Yet, analyses of 36 progenies issued from parents with distinct chloroplast and/or mitochondrial DNA haplotypes only revealed a maternal contribution. Natural populations of C. fruticans are moderately to highly differentiated at the regional scale with a strong isolation-by-distance pattern detected on nuclear data, indicating limited gene flow. An isolated site ('Moulis'), located on the marginal distribution area, was remarkably genetically depauperate and highly differentiated from other populations. Further studies on the variation of mating strategies in C. fruticans should consider populations with contrasting patterns of genetic diversity. The artificial 'CEFE' population also offers opportunities for experiments in a closed system

    Thiodiketopiperazines with two spirocyclic centers extracted from Botryosphaeria mamane, an endophytic fungus isolated from Bixa orellana L

    No full text
    International audienceThree thiodiketopiperazines, botryosulfuranols A-C (1–3) were isolated from the endophytic fungus Botryosphaeria mamane. The three compounds present sulfur atoms on α- and ÎČ-positions of phenylalanine derived residues and unprecedented two spirocyclic centers at C-4 and C-2â€Č. Their planar structures were determined by spectroscopic analysis and absolute configurations were achieved by X-ray diffraction analysis and ECD and NMR chemical shifts calculations. Botryosulfuranol A (1) was the most cytotoxic compound against four cancer cell lines (HT-29, HepG2, Caco-2, HeLa) and two healthy cell lines (IEC6, Vero) highlighting the importance of an electrophilic center for cell growth inhibition
    corecore