152 research outputs found

    Direct Graphene Growth on Insulator

    Get PDF
    Fabrication of graphene devices is often hindered by incompatibility between the silicon technology and the methods of graphene growth. Exfoliation from graphite yields excellent films but is good mainly for research. Graphene grown on metal has a technological potential but requires mechanical transfer. Growth by SiC decomposition requires a temperature budget exceeding the technological limits. These issues could be circumvented by growing graphene directly on insulator, implying Van der Waals growth. During growth, the insulator acts as a support defining the growth plane. In the device, it insulates graphene from the Si substrate. We demonstrate planar growth of graphene on mica surface. This was achieved by molecular beam deposition above 600{\deg}C. High resolution Raman scans illustrate the effect of growth parameters and substrate topography on the film perfection. Ab initio calculations suggest a growth model. Data analysis highlights the competition between nucleation at surface steps and flat surface. As a proof of concept, we show the evidence of electric field effect in a transistor with a directly grown channel.Comment: 13 pages, 6 figure

    A Graphene-based Hot Electron Transistor

    Get PDF
    We experimentally demonstrate DC functionality of graphene-based hot electron transistors, which we call Graphene Base Transistors (GBT). The fabrication scheme is potentially compatible with silicon technology and can be carried out at the wafer scale with standard silicon technology. The state of the GBTs can be switched by a potential applied to the transistor base, which is made of graphene. Transfer characteristics of the GBTs show ON/OFF current ratios exceeding 50.000.Comment: 18 pages, 6 figure

    No impact of a short-term climatic "El Niño" fluctuation on gut microbial diversity in populations of the Galápagos marine iguana (Amblyrhynchus cristatus)

    Get PDF
    Gut microorganisms are crucial for many biological functions playing a pivotal role in the host's well-being. We studied gut bacterial community structure of marine iguana populations across the Galápagos archipelago. Marine iguanas depend heavily on their specialized gut microbiome for the digestion of dietary algae, a resource whose growth was strongly reduced by severe "El Niño"-related climatic fluctuations in 2015/2016. As a consequence, marine iguana populations showed signs of starvation as expressed by a poor body condition. Body condition indices (BCI) varied between island populations indicating that food resources (i.e., algae) are affected differently across the archipelago during 'El Niño' events. Though this event impacted food availability for marine iguanas, we found that reductions in body condition due to "El Niño"-related starvation did not result in differences in bacterial gut community structure. Species richness of gut microorganisms was instead correlated with levels of neutral genetic diversity in the distinct host populations. Our data suggest that marine iguana populations with a higher level of gene diversity and allelic richness may harbor a more diverse gut microbiome than those populations with lower genetic diversity. Since low values of these diversity parameters usually correlate with small census and effective population sizes, we use our results to propose a novel hypothesis according to which small and genetically less diverse host populations might be characterized by less diverse microbiomes. Whether such genetically depauperate populations may experience additional threats from reduced dietary flexibility due to a limited intestinal microbiome is currently unclear and calls for further investigation

    Comprehensive Identification and Modified-Site Mapping of S-Nitrosylated Targets in Prostate Epithelial Cells

    Get PDF
    Although overexpression of nitric oxide synthases (NOSs) has been found associated with prostate diseases, the underlying mechanisms for NOS-related prostatic diseases remain unclear. One proposed mechanism is related to the S-nitrosylation of key regulatory proteins in cell-signaling pathways due to elevated levels of NO in the prostate. Thus, our primary objective was to identify S-nitrosylated targets in an immortalized normal prostate epithelial cell line, NPrEC.We treated NPrEC with nitroso-cysteine and used the biotin switch technique followed by gel-based separation and mass spectrometry protein identification (using the LTQ-Orbitrap) to discover S-nitrosylated (SNO) proteins in the treated cells. In parallel, we adapted a peptide pull-down methodology to locate the site(s) of S-nitrosylation on the protein SNO targets identified by the first technique. This combined approach identified 116 SNO proteins and determined the sites of modification for 82 of them. Over 60% of these proteins belong to four functional groups: cell structure/cell motility/protein trafficking, protein folding/protein response/protein assembly, mRNA splicing/processing/transcriptional regulation, and metabolism. Western blot analysis validated a subset of targets related to disease development (proliferating cell nuclear antigen, maspin, integrin beta4, alpha-catenin, karyopherin [importin] beta1, and elongation factor 1A1). We analyzed the SNO sequences for their primary and secondary structures, solvent accessibility, and three-dimensional structural context. We found that about 80% of the SNO sites that can be mapped into resolved structures are buried, of which approximately half have charged amino acids in their three-dimensional neighborhood, and the other half residing within primarily hydrophobic pockets.We here identified 116 potential SNO targets and mapped their putative SNO sites in NPrEC. Elucidation of how this post-translational modification alters the function of these proteins should shed light on the role of NO in prostate pathologies. To our knowledge, this is the first report identifying SNO targets in prostate epithelial cells

    Wide-field dynamic astronomy in the near-infrared with Palomar Gattini-IR and DREAMS

    Get PDF
    There have been a dramatic increase in the number of optical and radio transient surveys due to astronomical transients such as gravitational waves and gamma ray bursts, however, there have been a limited number of wide-field infrared surveys due to narrow field-of-view and high cost of infrared cameras, we present two new wide-field near-infrared fully automated surveyors; Palomar Gattini-IR and the Dynamic REd All-sky Monitoring Survey (DREAMS). Palomar Gattini-IR, a 25 square degree J-band imager that begun science operations at Palomar Observatory, USA in October 2018; we report on survey strategy as well as telescope and observatory operations and will also providing initial science results. DREAMS is a 3.75 square degree wide-field imager that is planned for Siding Spring Observatory, Australia; we report on the current optical and mechanical design and plans to achieve on-sky results in 2020. DREAMS is on-track to be one of the first astronomical telescopes to use an Indium Galium Arsenide (InGaAs) detector and we report initial on-sky testing results for the selected detector package. DREAMS is also well placed to take advantage and provide near-infrared follow-up of the LSST

    Practical Indicators for Risk of Airborne Transmission in Shared Indoor Environments and Their Application to COVID-19 Outbreaks

    Get PDF
    Some infectious diseases, including COVID-19, can undergo airborne transmission. This may happen at close proximity, but as time indoors increases, infections can occur in shared room air despite distancing. We propose two indicators of infection risk for this situation, that is, relative risk parameter (Hr) and risk parameter (H). They combine the key factors that control airborne disease transmission indoors: viruscontaining aerosol generation rate, breathing flow rate, masking and its quality, ventilation and aerosol-removal rates, number of occupants, and duration of exposure. COVID-19 outbreaks show a clear trend that is consistent with airborne infection and enable recommendations to minimize transmission risk. Transmission in typical prepandemic indoor spaces is highly sensitive to mitigation efforts. Previous outbreaks of measles, influenza, and tuberculosis were also assessed. Measles outbreaks occur at much lower risk parameter values than COVID-19, while tuberculosis outbreaks are observed at higher risk parameter values. Because both diseases are accepted as airborne, the fact that COVID-19 is less contagious than measles does not rule out airborne transmission. It is important that future outbreak reports include information on masking, ventilation and aerosol-removal rates, number of occupants, and duration of exposure, to investigate airborne transmission

    LINT, a Novel dL(3)mbt-Containing Complex, Represses Malignant Brain Tumour Signature Genes

    Get PDF
    Mutations in the l(3)mbt tumour suppressor result in overproliferation of Drosophila larval brains. Recently, the derepression of different gene classes in l(3)mbt mutants was shown to be causal for transformation. However, the molecular mechanisms of dL(3)mbt-mediated gene repression are not understood. Here, we identify LINT, the major dL(3)mbt complex of Drosophila. LINT has three core subunits—dL(3)mbt, dCoREST, and dLint-1—and is expressed in cell lines, embryos, and larval brain. Using genome-wide ChIP–Seq analysis, we show that dLint-1 binds close to the TSS of tumour-relevant target genes. Depletion of the LINT core subunits results in derepression of these genes. By contrast, histone deacetylase, histone methylase, and histone demethylase activities are not required to maintain repression. Our results support a direct role of LINT in the repression of brain tumour-relevant target genes by restricting promoter access
    corecore