3 research outputs found

    Ecological stoichiometry beyond Redfield: An ionomic perspective on elemental homeostasis

    Get PDF
    Elemental homeostasis has been largely characterized using three important elements that were part of the Redfield ratio (i.e., carbon: nitrogen: phosphorus). These efforts have revealed substantial diversity in homeostasis among taxonomic groups and even within populations. Understanding the evolutionary basis, and ecological consequences of such diversity is a central challenge. Here, we propose that a more complete understanding of homeostasis necessitates the consideration of other elements beyond C, N, and P. Specifically, we posit that physiological complexity underlying maintenance of elemental homeostasis along a single elemental axis impacts processing of other elements, thus altering elemental homeostasis along other axes. Indeed, transcriptomic studies in a wide variety of organisms have found that individuals differentially express significant proportions of the genome in response to variability in supply stoichiometry in order to maintain varying levels of homeostasis. We review the literature from the emergent field of ionomics that has established the consequences of such physiological trade-offs on the content of the entire suite of elements in an individual. Further, we present experimental data on bacteria exhibiting divergent phosphorus homeostasis phenotypes demonstrating the fundamental interconnectedness among elemental quotas. These observations suggest that physiological adjustments can lead to unexpected patterns in biomass stoichiometry, such as correlated changes among suites of non-limiting microelements in response to limitation by macroelements. Including the entire suite of elements that comprise biomass will foster improved quantitative understanding of the links between chemical cycles and the physiology of organisms.Peer reviewedIntegrative Biolog

    Data from: Ionome and elemental transport kinetics shaped by parallel evolution in threespine stickleback

    No full text
    Evidence that organisms evolve rapidly enough to alter ecological dynamics necessitates investigation of the reciprocal links between ecology and evolution. Data that link genotype to phenotype to ecology are needed to understand both the process and ecological consequences of rapid evolution. Here we quantified the suite of elements in individuals (i.e., ionome) and the fluxes of key nutrients across populations of threespine stickleback. We find that allelic variation associated with freshwater adaptation that controls bony plating is associated with changes in the ionome and nutrient recycling. More broadly, we find that adaptation of marine fish to freshwater conditions shifts the ionomes of natural populations and populations raised in common gardens. In both cases ionomic divergence between populations was primarily driven by differences in trace elements rather than elements typically associated with bone. These findings demonstrate the utility of ecological stoichiometry and the importance of ionome-wide data in understanding eco-evolutionary dynamics
    corecore