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Elemental homeostasis has been largely characterized using three important elements

that were part of the Redfield ratio (i.e., carbon: nitrogen: phosphorus). These efforts have

revealed substantial diversity in homeostasis among taxonomic groups and even within

populations. Understanding the evolutionary basis, and ecological consequences of such

diversity is a central challenge. Here, we propose that a more complete understanding

of homeostasis necessitates the consideration of other elements beyond C, N, and P.

Specifically, we posit that physiological complexity underlying maintenance of elemental

homeostasis along a single elemental axis impacts processing of other elements, thus

altering elemental homeostasis along other axes. Indeed, transcriptomic studies in a

wide variety of organisms have found that individuals differentially express significant

proportions of the genome in response to variability in supply stoichiometry in order

to maintain varying levels of homeostasis. We review the literature from the emergent

field of ionomics that has established the consequences of such physiological trade-offs

on the content of the entire suite of elements in an individual. Further, we present

experimental data on bacteria exhibiting divergent phosphorus homeostasis phenotypes

demonstrating the fundamental interconnectedness among elemental quotas. These

observations suggest that physiological adjustments can lead to unexpected patterns

in biomass stoichiometry, such as correlated changes among suites of non-limiting

microelements in response to limitation by macroelements. Including the entire suite of

elements that comprise biomass will foster improved quantitative understanding of the

links between chemical cycles and the physiology of organisms.

Keywords: elemental profiling, freshwater heterotrophic bacteria, ionome, ionomics, nutrient limitation,

phosphorus supply

INTRODUCTION

Ecological stoichiometry considers individuals as collections of chemical elements akin to a very
large molecule. At the most fundamental level, ecological stoichiometry is the study of the sub-
organismal mechanisms, and supra-organismal consequences of the principle of mass balance. It
operates on the axiom that living entities are not a passive conduit of chemical supply, but rather
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actively regulating their elemental stoichiometry, referred to
as elemental homeostasis (Sterner and Elser, 2002). Elemental
homeostasis is the fulcrum for most stoichiometric models
predicting processes at the level of the individual- (e.g.,
Frost et al., 2005), population- (e.g., Andersen et al., 2004),
community- (e.g., Elser and Urabe, 1999), ecosystem- (e.g.,
Sterner et al., 1992), and global (e.g., Doney et al., 2009; Galbraith
and Martiny, 2015) levels of organization. Indeed, without
elemental homeostasis “ecological stoichiometry would be a dull
subject” (Sterner and Elser, 2002).

At least two different approaches have been used to quantify
the degree of elemental homeostasis (Sterner and Elser, 2002;
Meunier et al., 2014). We quantify it using the slope of the log-
log relationship between resource and consumer stoichiometry
(Figure 1). Most stoichiometric models assume osmotrophs at
the base of food webs exhibit relaxed stoichiometric homeostasis
compared to phagotrophs occupying higher trophic levels. While
this assumption has been a subject of debate and found to be
of negligible relevance to stoichiometric models in consumers
(Wang et al., 2012) the great diversity in the degree of elemental
homeostasis (e.g., Frost et al., 2005; Scott et al., 2012; Godwin
and Cotner, 2014, 2015; Meunier et al., 2014) remains largely
unexplained. Such diversity is surprising because nutrient supply
environments can impose strong selection on elemental quotas
and consumption, which may be linked to stoichiometry. For
example, Godwin and Cotner (2015) found that P content of
isolating medium selected for strains of heterotrophic bacteria
differing in P homeostasis and elemental quotas. The eco-
evolutionary processes that maintain such substantially divergent
phenotypes in natural populations is a central frontier in
ecological stoichiometry.

Variation in genomic architecture has a major effect on
physiological responses of both autotrophs (e.g., Arabidopsis;
Misson et al., 2005) and heterotrophs (e.g., Daphnia; Roy
Chowdhury et al., 2014) to changes in supply stoichiometry
with important implications for homeostasis and fitness (e.g.,
Jeyasingh et al., 2009). Although, several informative loci for P
use have been identified in crop plants (recently reviewed in van
de Wiel et al., 2016), it is important to note that different genes
and physiological pathways can underlie similar homeostatic
and fitness outcomes among genotypes in autotrophs (Glycine
max; Li et al., 2016) and heterotrophs (Daphnia pulicaria;
Sherman et al., in review). This raises the possibility that
genotypes exhibiting differing degrees of elemental homeostasis
can vary in other traits. At the simplest level, we can think
of elements that share similar properties that can be replaced
when supply of one is limiting (e.g., substituting P-lipids with
S-lipids under P limitation; Van Mooy et al., 2009; Bellinger
et al., 2014). It is possible that a homeostatic genotype can
maintain P content via efficient use of P, while a flexible genotype
decreases P content, but increases S content to maintain basic
cellular functions (Figure 1). As such, we need to understand
coupled elemental quotas (such as P and S), as well as selection
operating on such pathways for a complete understanding
of the processes maintaining phosphorus homeostasis in
populations.

FIGURE 1 | (A) Schematic representation of carbon: phosphorus (C:P)

homeostasis in relation to supply C:P in homeostatic (solid line) and

non-homeostatic (dotted line) consumers. (B) Hypothesized correlated shifts in

carbon: sulfur (C:S) stoichiometry in the same consumer, showing no effect of

P on S (dotted line), decrease in S under P limitation (dashed line), and

increase in S under P-limitation (solid line).

Potential for correlated changes in homeostasis alongmultiple
elemental axes is perhaps more apparent when one considers
the complex physiological adjustments organisms make to
maintain net anabolism in limiting conditions of elemental
supply. Seminal studies in E. coli revealed the complex nature
of responses to P limitation (Van Bogelen et al., 1996),
involving differential expression of ∼400 proteins orchestrating
not only P use physiology, but also those involving other
bulk and trace elements. Such complex physiological responses
appear to be common. For example, studies in Pseudovibrio
(Romano et al., 2015), Saccharomyces (Boer et al., 2010),
Chlamydomonas (Moseley et al., 2006), Arabidopsis (Misson
et al., 2005), and Daphnia (Jeyasingh et al., 2011), reveal that
organisms differentially express a significant proportion of genes
and metabolic pathways depending on P supply, often by
several-fold. While several candidate P-stress response genes
are up-regulated (e.g., P transporters, phosphatases; reviewed
in Jeyasingh and Weider, 2007), so are several hundreds
of other genes involved in a variety of pathways. Merchant
and Helmann (2012) provided a comprehensive treatise on
the diversity of microbial strategies to variation in elemental
supply. An important message arising from this work is the
fundamental interconnectedness of elements in biomass. In other
words, acclimatory or adaptive responses to supply stoichiometry
often involve changes in the physiological processing of many
elements.

In this perspective, we ask whether such broad physiological
changes in response to supply stoichiometry alters the entire
suite of elements encompassing an individual. Defined as
the mineral nutrient and trace element composition of an
organism, the ionome represents all the elements of cellular and
organismal systems (Salt et al., 2008). As such, the ionome is a
dynamic network of elements that underlies the morphological,
anatomical, and physiological state of an organism, which
are ultimately controlled by the genome in response to the
environment. We review evidence in the literature as well as
analyze experimental data to illuminate the dynamic nature of the
ionome, and discuss its implications for elemental homeostasis
specifically, and the framework of ecological stoichiometry in
general.
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EVIDENCE IN THE LITERATURE:

Ionomics is a relatively new field that has focused primarily on
plants (see Huang and Salt, 2016 for a recent review). Ionomics
was first employed to better understand the genomic architecture
underlying mineral and trace element use in Arabidopsis, because
studying the use of one element resulted in an incomplete
picture of the genotype-to-phenotype map (Lahner et al., 2003).
This approach has since been used as a low-cost, multi-proxy
diagnostic tool in agronomy (Baxter et al., 2014) as well as
medicine (Malinouski et al., 2014). Ionomics connects genetic
potential and evolutionary history to growth, physiology and
fitness in contemporary ecological conditions. Studies on both
Saccharomyces cerevisiae (Eide et al., 2005; Yu et al., 2012)
and Arabidopsis thaliana (Baxter et al., 2008) clearly show
that both genetics and supply stoichiometry alter ionomes.
Specifically, Eide et al. (2005) characterized the ionomes of over
4,000 yeast strains and found considerable variation in all 13
elements quantified, with both strong positive (e.g., P-Co) and
negative (e.g., P-S) correlations under optimal growth conditions.
Furthermore, they found that genotypes with mutations in
similar functional categories (e.g., vacuolar, mitochondrial)
showed similar ionomic signatures. Yu et al. (2012) utilized gene
deletion and open reading frame overexpression collections of
yeast (∼5,000 strains) and found general patterns in the genomic
basis of ionomic divergence. Mutations in genes involved in
protein metabolism or transport had the largest impacts on
the ionome, followed by changes in gene copy number. Baxter
et al. (2008) found that Arabidopsis exhibited consistent ionomic
patterns depending on supply stoichiometry such that the nature
of nutrient stress could be predicted based on the ionome. While
P content of leaves decreased under P limitation, there was
considerable variation among genotypes, making P content a
poor predictor of physiological status compared to a six element
(As, B, Co, Cu, P, Zn) model, which included strong positive (e.g.,
P-Cu) and negative (e.g., P-Zn) correlations among elements.
Considering combinations of elements as phenotypes, as opposed
to considering single elements at a time, allows for greater
sensitivity in identifying stoichiometric variation because of the
fundamental interconnectedness among elements in biomass
(Baxter, 2015).

An underappreciated component in understanding ionomes
is likely to be transmembrane elemental transport systems, with
transporters possessing multi-element specificity found to be
more common than previously appreciated (Morrissey et al.,
2009; Mitani-Ueno et al., 2011). As such, ionomic approaches are
well suited to illuminate the complex physiological adjustments
that organisms make in response to changes in supply
stoichiometry. For example, P limitation increases the expression
of several high-affinity phosphate transporters, which are also
known to take up As (Muchhal et al., 1996) and thus explains
increased As content in P-limited plants. Similarly, plants are
known to scavenge metals such as Zn to minimize the formation
of complexes with P (Misson et al., 2005) which could underlie
the observed increase of Zn content under P limited conditions.

Evidence for ionome-wide shifts from the field are also
available. Synechococcus cells collected from regions of the

Sargasso Sea that vary in N and P supply exhibited several-fold
cell quota differences in a variety of elements (e.g., Mn, Ni, Zn)
(Twining et al., 2010). In addition, utilizing a global dataset,
Loladze (2014) reported striking changes in the ionomes of C3

plants from four continents in response to elevated atmospheric
CO2. In general, elevated CO2 significantly decreased not only N
and P content, but also several other elements, including K, Ca,
S, Mg, Fe, Zn, Cu, and Mn. These observations clearly indicate
that supply stoichiometry alters entire suites of elements, beyond
the commonly studied Redfield elements. Understanding the
dynamics and regulation of these minor elements is important
not only in understanding the ecology and evolution of microbes
and plants, but as discussed by Loladze (2014), the variation in
the composition of trace elements plays an important role in the
nutrition of consumers, including humans (Myers et al., 2014).

EXPERIMENTAL EVIDENCE

Are there patterns in ionomic architecture relevant to key
parameters in stoichiometric theory such as homeostasis of
Redfield elements? The staggering diversity of stoichiometric
physiologies discovered among strains of heterotrophic bacteria
inhabiting glacial lakes in northern U.S.A (Godwin and Cotner,
2015) provides an ideal testbed for answering such questions.
We studied a subset of strains that were found to exhibit
divergent homeostatic coefficients in terms of phosphorus (5
flexible, heterostoichs; 4 inflexible, homeostoichs) at two levels
of P supply (C:P = 100 and 10,000; see Supplementary Material
for methods). The nine strains used in this study represented
three unique genera (Brevundimonas, Flavobacterium, and
Sphingomonas) with three strains coming from each genus. All
three of the Brevundimonas strains were characterized as flexible,
whereas Flavobacterium and Sphingomonas each had two strains
characterized as inflexible and one strain as flexible. Although we
expected strong strain-specific responses, we generally predicted
that homoestoichs should exhibit greater changes in other
elements (e.g., S) between high and low P supply conditions
compared to heterostoichs due to upregulation of compensating
mechanisms. Each strain was originally isolated from lakes
within Minnesota using either agar plates or dilution isolation as
described previously (Godwin and Cotner, 2015).

A total of 25 elements were detected, of which nine (Co, Cr,
K, Mg, Mn, Na, P, S, Zn) were present above detection limits
in all samples and were used for further analyses. As expected,
there was considerable strain-specific variation in biomass P
content (Figure 2). Considerably more genotypic replicates are
required to rigorously test for systematic differences among P
homeostasis and correlated changes in the content of other
elements.

Nevertheless, important trends were apparent in this dataset.
We quantified the magnitude of elemental change in each
strain and compared the differences between the two levels of
homeostasis (hereto- vs. homeostoichs). Although considerable
strain-specific responses preclude identification of any robust
patterns, the response of the two homeostoich phenotypes appear
to be distinct (Figure 2). Closer examination revealed that certain
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FIGURE 2 | Flexibility of nine elements in relation to each other in nine strains of freshwater heterotrophic bacteria. We define flexibility as the

log10[elemental content (mass/mass) at C:P of 10,000:1/ elemental content at C:P of 100:1]. Negative values represent a reduction in element quota under C:P =

10,000, zero means homeostasis, and positive values indicate that the quota increased under P-limitation. Symbols denote strains that are relatively flexible (open

circles) or inflexible (closed circles) in phosphorus content. ρ = Spearman’s rank coefficient.

groups of elements were positively correlated with each other,
namely Mg-Na-K, and to a lesser degree, Zn-S and Cr-Co-
Mn (Figure 2). Of particular interest was how flexibility in P
content related to flexibility of other elements (leftmost column
in Figure 2). Consistent with previous studies (Godwin and
Cotner, 2015), P content of all strains was lower under the C:P=

10,000 treatment. Interestingly, strains differed in the responses
of other elements, with roughly half of the strains becomingmore
concentrated while the other half becoming less concentrated for
the eight other elements. However, no systematic patterns with
regard to the P homeostasis phenotype (flexible vs, inflexible)
were apparent. We note that this preliminary result needs to be

rigorously verified because the experiment had limitations (see
Supplementary Material).

DISCUSSION

It is clear that ionomes are sensitive to both the external
environment as well as the genomic composition. Whether
such changes in the ionome are ecologically relevant is an
important question worthy of attention by both empirical and
theoretical practitioners of ecological stoichiometry. Studies with
plants indicate that individual growth, even under strong P
limitation is better predicted, not by P use efficiency alone,
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but by the uptake of a few other elements as well (Baxter
et al., 2008). We posit that the correlated nature of elements
in biomass predisposes organisms to tradeoffs in maintaining
homeostasis of a particular element. If these tradeoffs occur,
being homeostatic along one axis should be associated with
changes in homeostasis along other elemental axes. At this
point, we do not understand ionomes sufficiently to make robust
predictions about what the most relevant trade-offs are. An
understanding of the role and relevance of these other elemental
axes, and the costs associated with the trade-offs among axes
certainly is important to understanding the stoichiometry of
organisms and ecological systems. The nature of such changes
will depend on the material demands of biochemical pathways
utilized tomaintain homeostasis. Such an inclusive perspective of
elemental homeostasis is required for understanding the diverse
stoichiometric physiologies observed in both osmotrophic and
phagotrophic populations (e.g., Frost et al., 2005; Godwin and
Cotner, 2014, 2015; Meunier et al., 2014), and reflects the current
state of evolutionary biology wherein the multifarious nature of
selection is a prerequisite for understanding trait evolution (e.g.,
Kaeuffer et al., 2012).

As our understanding of nutrient limitation shifts from single
nutrient models, to more complex, multiple nutrient models
predicting co-limitation (e.g., Saito et al., 2008; Harpole et al.,
2011; Bracken et al., 2015), the importance of attention to
ionomic patterns in natural systems is magnified. Although
there is a paucity of ionomic data in natural ecosystems, such
data should reveal important patterns that could illuminate
the mechanisms underlying co-limitation, which is increasingly
common and should replace the Leibig paradigm (Kaspari and
Powers, 2016). As such, simultaneous limitation of multiple
elements may be strong sources of selection structuring
populations with important implications for contemporary
nutrient budgets. Nevertheless, it is unlikely that all of the
25-odd elements represented in biology will impart the same
magnitude of selection or ecological significance. Although an
organism should acquire all elements from the environment,
some elements (e.g., copper) can be recycled within the organism
quite efficiently that it may not need to be constantly acquired
from the environment (Nose et al., 2006), while others (e.g.,
phosphorus) are excreted as a byproduct of metabolic processes
and need to be constantly acquired from the environment.
However, if P and Cu are coupled, then the evolutionary and
ecological importance of Cu is amplified. Thus, focusing on
correlations among elements may be a particularly informative
approach.

Ionomic data from both the literature and our experiment
reveal several correlations, although the functional basis for
such correlations appears to be more complex than what
can be predicted by linkages based on cellular physiology of
element processing. For example, sodium dependent phosphate
uptake by cells is a well-established mechanism (discussed
in the context of ecological stoichiometry in Jeyasingh and
Weider, 2007), yet sodium and phosphorus do not appear to
be correlated at the ionome level. Clearly, much more remains
to be understood about the complex processes underlying
such patterns. For example, Malinouski et al. (2014) studied
HeLa cell lines to characterize mechanisms that regulate trace

elements by performing a genome-wide siRNA/ionomics
screen to identify the major pathways. They analyzed a total of
21,360 human gene knockdowns for changes in trace elements
in HeLa cells and detected many known genes involved in
transport and regulation of trace elements while also identifying
several novel genes that regulate the processing of trace
elements. As such, the mechanisms underlying correlations
among elements in an ionome is difficult, and perhaps of little
ecological relevance. However, general patterns in correlations
among elements at the level of the ionome will have important
ecological ramifications. Discovering such patterns and
associated ecological implications should be viewed as a central
challenge.

Genotype-specific effects common in ionomic studies
discussed above are similar to discoveries about intraspecific
variation in biomass C:N:P stoichiometries (e.g., Bertram et al.,
2008; Goos et al., 2014; Downs et al., 2016) which are shaped by
selection (e.g., El-Sabaawi et al., 2012; Tobler et al., 2016), and
generate discernable patterns at higher levels of organization
(e.g., Elser et al., 2000). While genetic recombination can
produce endless varieties of biota, organismal evolution is
bounded by principles of physics and chemistry (Williams and
Frausto da Silva, 2006). Ecological stoichiometry, by virtue of
abstracting such complexity, has unraveled general patterns
linking elements such as phosphorus with fitness-relevant traits
and subsequent ecological consequences. The focus on only
three of the ∼25 elements represented in biology is limited,
however, and perhaps has misrepresented both patterns and
processes in ecological stoichiometry. Whether, and to what
extent, predictions of stoichiometric models are enhanced,
similar to those predicting individual growth (e.g., Baxter et al.,
2008), by inclusion of the entire suite of elements remains to be
seen. Advances in low-cost, high throughput elemental analyses
already enable an ionomic view of ecological stoichiometry, and
such data will be required to make sense of central parameters
in stoichiometric models in light of genomic information,
and perhaps also metagenomic data using meta-ionomics,
for a more comprehensive genes-to-ecosystems picture of the
biosphere.
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