1,380 research outputs found

    Co-benefits of global, domestic, and sectoral greenhouse gas mitigation for US air quality and human health in 2050

    Get PDF
    Policies to reduce greenhouse gas (GHG) emissions can bring ancillary benefits of improved air quality and reduced premature mortality, in addition to slowing climate change. Here we study the co-benefits of global and domestic GHG mitigation on US air quality and human health in 2050 at fine resolution using dynamical downscaling, and quantify for the first time the co-benefits from foreign GHG mitigation. Relative to a reference scenario, global GHG reductions in RCP4.5 avoid 16000 PM2.5-related all-cause deaths yr-1 (90% confidence interval, 11700-20300), and 8000 (3600-12400) O3-related respiratory deaths yr-1 in the US in 2050. Foreign GHG mitigation avoids 15% and 62% of PM2.5- and O3-related total avoided deaths, highlighting the importance of foreign GHG mitigation on US human health benefits. GHG mitigation in the US residential sector brings the largest co-benefits for PM2.5-related deaths (21% of total domestic co-benefits), and industry for O3 (17%). Monetized benefits, for avoided deaths from ozone, PM2.5, and heat stress from a related study, are 148(148 (96-201) per ton CO2 at high valuation and 49(49 (32-67) at low valuation, of which 36% are from foreign GHG reductions. These benefits likely exceed the marginal cost of GHG reductions in 2050. The US gains significantly greatermore » co-benefits when coordinating GHG reductions with foreign countries. Similarly, previous studies estimating co-benefits locally or regionally may greatly underestimate the full co-benefits of coordinated global actions.« les

    Co-benefits of global and regional greenhouse gas mitigation for US air quality in 2050

    Get PDF
    Policies to mitigate greenhouse gas (GHG) emissions will not only slow climate change but can also have ancillary benefits of improved air quality. Here we examine the co-benefits of both global and regional GHG mitigation for US air quality in 2050 at fine resolution, using dynamical downscaling methods, building on a previous global co-benefits study (West et al., 2013). The co-benefits for US air quality are quantified via two mechanisms: through reductions in co-emitted air pollutants from the same sources and by slowing climate change and its influence on air quality, following West et al. (2013). Additionally, we separate the total co-benefits into contributions from domestic GHG mitigation vs. mitigation in foreign countries. We use the Weather Research and Forecasting (WRF) model to dynamically downscale future global climate to the regional scale and the Sparse Matrix Operator Kernel Emissions (SMOKE) program to directly process global anthropogenic emissions to the regional domain, and we provide dynamical boundary conditions from global simulations to the regional Community Multi-scale Air Quality (CMAQ) model. The total co-benefits of global GHG mitigation from the RCP4.5 scenario compared with its reference are estimated to be higher in the eastern US (ranging from 0.6 to 1.0 µg m−3) than the west (0–0.4 µg m−3) for fine particulate matter (PM2.5), with an average of 0.47 µg m−3 over the US; for O3, the total co-benefits are more uniform at 2–5 ppb, with a US average of 3.55 ppb. Comparing the two mechanisms of co-benefits, we find that reductions in co-emitted air pollutants have a much greater influence on both PM2.5 (96 % of the total co-benefits) and O3 (89 % of the total) than the second co-benefits mechanism via slowing climate change, consistent with West et al. (2013). GHG mitigation from foreign countries contributes more to the US O3 reduction (76 % of the total) than that from domestic GHG mitigation only (24 %), highlighting the importance of global methane reductions and the intercontinental transport of air pollutants. For PM2.5, the benefits of domestic GHG control are greater (74 % of total). Since foreign contributions to co-benefits can be substantial, with foreign O3 benefits much larger than those from domestic reductions, previous studies that focus on local or regional co-benefits may greatly underestimate the total co-benefits of global GHG reductions. We conclude that the US can gain significantly greater domestic air quality co-benefits by engaging with other nations to control GHGs.</html

    Well flow and dilution measurements for characterization of vertical hydraulic conductivity structure of a carbonate aquifer

    Get PDF
    The paper aims to characterize vertical variations in horizontal hydraulic properties in a fractured carbonate aquifer, the Cretaceous Chalk in East Yorkshire, UK. Two approaches are used: an inverse model of well flow applied to flow logs of pumped open wells, and open well dilution testing. In this case study, transmissivity in the unconfined part of the aquifer is dominated by the highly permeable zone of water table fluctuation, where carbonate dissolution has occurred enhancing fracture aperture; a similar enhanced permeability zone is present at the top of the aquifer where it is confined beneath glacial deposits, although periglacial physical weathering during Quaternary cold periods, rather than carbonate dissolution, is responsible. The aquifer is also shown to contain deeper permeable horizons of stratigraphic origin, which are better developed in the unconfined section

    Giant serous cystadenoma arising from an accessory ovary in a morbidly obese 11-year-old girl: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Ectopic ovarian tissue is an unusual entity, especially if it is an isolated finding thought to be of embryological origin.</p> <p>Case presentation</p> <p>An 11-year-old, morbidly obese female presented with left flank pain, nausea, and irregular menses. Various diagnostic procedures suggested a large ovarian cyst, and surgical resection was performed.</p> <p>Conclusion</p> <p>Histologically, the resected mass was not of tubal origin as suspected, but a serous cystadenoma arising from ovarian tissue. The patient's two normal, eutopic ovaries were completely uninvolved and unaffected. A tumor arising from ectopic ovarian tissue of embryological origin seems the most likely explanation. We suggest refining the descriptive nomenclature so as to more precisely characterize the various presentations of ovarian ectopia.</p

    Nitrogen limitation constrains sustainability of ecosystem response to CO2

    Full text link
    Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, it is unknown whether CO2-induced stimulation of plant growth and biomass accumulation will be sustained or whether limited nitrogen (N) availability constrains greater plant growth in a CO2-enriched world(1-9). Here we show, after a six-year field study of perennial grassland species grown under ambient and elevated levels of CO2 and N, that low availability of N progressively suppresses the positive response of plant biomass to elevated CO2. Initially, the stimulation of total plant biomass by elevated CO2 was no greater at enriched than at ambient N supply. After four to six years, however, elevated CO2 stimulated plant biomass much less under ambient than enriched N supply. This response was consistent with the temporally divergent effects of elevated CO2 on soil and plant N dynamics at differing levels of N supply. Our results indicate that variability in availability of soil N and deposition of atmospheric N are both likely to influence the response of plant biomass accumulation to elevated atmospheric CO2. Given that limitations to productivity resulting from the insufficient availability of N are widespread in both unmanaged and managed vegetation(5,7-9), soil N supply is probably an important constraint on global terrestrial responses to elevated CO2.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62769/1/nature04486.pd

    Soil Microbial Responses to Elevated CO2 and O3 in a Nitrogen-Aggrading Agroecosystem

    Get PDF
    Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2 (1.5×ambient) significantly increased, while O3 (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios

    Transcriptome characterization and polymorphism detection between subspecies of big sagebrush (Artemisia tridentata)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Big sagebrush (<it>Artemisia tridentata</it>) is one of the most widely distributed and ecologically important shrub species in western North America. This species serves as a critical habitat and food resource for many animals and invertebrates. Habitat loss due to a combination of disturbances followed by establishment of invasive plant species is a serious threat to big sagebrush ecosystem sustainability. Lack of genomic data has limited our understanding of the evolutionary history and ecological adaptation in this species. Here, we report on the sequencing of expressed sequence tags (ESTs) and detection of single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers in subspecies of big sagebrush.</p> <p>Results</p> <p>cDNA of <it>A. tridentata </it>sspp. <it>tridentata </it>and <it>vaseyana </it>were normalized and sequenced using the 454 GS FLX Titanium pyrosequencing technology. Assembly of the reads resulted in 20,357 contig consensus sequences in ssp. <it>tridentata </it>and 20,250 contigs in ssp. <it>vaseyana</it>. A BLASTx search against the non-redundant (NR) protein database using 29,541 consensus sequences obtained from a combined assembly resulted in 21,436 sequences with significant blast alignments (≤ 1e<sup>-15</sup>). A total of 20,952 SNPs and 119 polymorphic SSRs were detected between the two subspecies. SNPs were validated through various methods including sequence capture. Validation of SNPs in different individuals uncovered a high level of nucleotide variation in EST sequences. EST sequences of a third, tetraploid subspecies (ssp. <it>wyomingensis</it>) obtained by Illumina sequencing were mapped to the consensus sequences of the combined 454 EST assembly. Approximately one-third of the SNPs between sspp. <it>tridentata </it>and <it>vaseyana </it>identified in the combined assembly were also polymorphic within the two geographically distant ssp. <it>wyomingensis </it>samples.</p> <p>Conclusion</p> <p>We have produced a large EST dataset for <it>Artemisia tridentata</it>, which contains a large sample of the big sagebrush leaf transcriptome. SNP mapping among the three subspecies suggest the origin of ssp. <it>wyomingensis </it>via mixed ancestry. A large number of SNP and SSR markers provide the foundation for future research to address questions in big sagebrush evolution, ecological genetics, and conservation using genomic approaches.</p

    The Impact of Local Genome Sequence on Defining Heterochromatin Domains

    Get PDF
    Characterizing how genomic sequence interacts with trans-acting regulatory factors to implement a program of gene expression in eukaryotic organisms is critical to understanding genome function. One means by which patterns of gene expression are achieved is through the differential packaging of DNA into distinct types of chromatin. While chromatin state exerts a major influence on gene expression, the extent to which cis-acting DNA sequences contribute to the specification of chromatin state remains incompletely understood. To address this, we have used a fission yeast sequence element (L5), known to be sufficient to nucleate heterochromatin, to establish de novo heterochromatin domains in the Schizosaccharomyces pombe genome. The resulting heterochromatin domains were queried for the presence of H3K9 di-methylation and Swi6p, both hallmarks of heterochromatin, and for levels of gene expression. We describe a major effect of genomic sequences in determining the size and extent of such de novo heterochromatin domains. Heterochromatin spreading is antagonized by the presence of genes, in a manner that can occur independent of strength of transcription. Increasing the dosage of Swi6p results in increased heterochromatin proximal to the L5 element, but does not result in an expansion of the heterochromatin domain, suggesting that in this context genomic effects are dominant over trans effects. Finally, we show that the ratio of Swi6p to H3K9 di-methylation is sequence-dependent and correlates with the extent of gene repression. Taken together, these data demonstrate that the sequence content of a genomic region plays a significant role in shaping its response to encroaching heterochromatin and suggest a role of DNA sequence in specifying chromatin state

    Search for particles with unexpected mass and charge in Z decays

    Get PDF
    • …
    corecore