2,293 research outputs found

    A cost function for similarity-based hierarchical clustering

    Full text link
    The development of algorithms for hierarchical clustering has been hampered by a shortage of precise objective functions. To help address this situation, we introduce a simple cost function on hierarchies over a set of points, given pairwise similarities between those points. We show that this criterion behaves sensibly in canonical instances and that it admits a top-down construction procedure with a provably good approximation ratio

    Time-scales of close-in exoplanet radio emission variability

    Get PDF
    We investigate the variability of exoplanetary radio emission using stellar magnetic maps and 3D field extrapolation techniques. We use a sample of hot Jupiter hosting stars, focusing on the HD 179949, HD 189733 and tau Boo systems. Our results indicate two time-scales over which radio emission variability may occur at magnetised hot Jupiters. The first is the synodic period of the star-planet system. The origin of variability on this time-scale is the relative motion between the planet and the interplanetary plasma that is co-rotating with the host star. The second time-scale is the length of the magnetic cycle. Variability on this time-scale is caused by evolution of the stellar field. At these systems, the magnitude of planetary radio emission is anticorrelated with the angular separation between the subplanetary point and the nearest magnetic pole. For the special case of tau Boo b, whose orbital period is tidally locked to the rotation period of its host star, variability only occurs on the time-scale of the magnetic cycle. The lack of radio variability on the synodic period at tau Boo b is not predicted by previous radio emission models, which do not account for the co-rotation of the interplanetary plasma at small distances from the star.Comment: 10 pages, 7 figures, 2 tables, accepted in MNRA

    On the environment surrounding close-in exoplanets

    Get PDF
    Exoplanets in extremely close-in orbits are immersed in a local interplanetary medium (i.e., the stellar wind) much denser than the local conditions encountered around the solar system planets. The environment surrounding these exoplanets also differs in terms of dynamics (slower stellar winds, but higher Keplerian velocities) and ambient magnetic fields (likely higher for host stars more active than the Sun). Here, we quantitatively investigate the nature of the interplanetary media surrounding the hot Jupiters HD46375b, HD73256b, HD102195b, HD130322b, HD179949b. We simulate the three-dimensional winds of their host stars, in which we directly incorporate their observed surface magnetic fields. With that, we derive mass-loss rates (1.9 to 8.0 ×1013M\times 10^{-13} M_{\odot}/yr) and the wind properties at the position of the hot-Jupiters' orbits (temperature, velocity, magnetic field intensity and pressure). We show that these exoplanets' orbits are super-magnetosonic, indicating that bow shocks are formed surrounding these planets. Assuming planetary magnetic fields similar to Jupiter's, we estimate planetary magnetospheric sizes of 4.1 to 5.6 planetary radii. We also derive the exoplanetary radio emission released in the dissipation of the stellar wind energy. We find radio fluxes ranging from 0.02 to 0.13 mJy, which are challenging to be observed with present-day technology, but could be detectable with future higher sensitivity arrays (e.g., SKA). Radio emission from systems having closer hot-Jupiters, such as from tau Boo b or HD189733b, or from nearby planetary systems orbiting young stars, are likely to have higher radio fluxes, presenting better prospects for detecting exoplanetary radio emission.Comment: 15 pages, 5 figures, accepted to MNRA

    Theoretical mass loss rates of cool main-sequence stars

    Get PDF
    We develop a model for the wind properties of cool main-sequence stars, which comprises their wind ram pressures, mass fluxes, and terminal wind velocities. The wind properties are determined through a polytropic magnetised wind model, assuming power laws for the dependence of the thermal and magnetic wind parameters on the stellar rotation rate. We use empirical data to constrain theoretical wind scenarios, which are characterised by different rates of increase of the wind temperature, wind density, and magnetic field strength. Scenarios based on moderate rates of increase yield wind ram pressures in agreement with most empirical constraints, but cannot account for some moderately rotating targets, whose high apparent mass loss rates are inconsistent with observed coronal X-ray and magnetic properties. For fast magnetic rotators, the magneto-centrifugal driving of the outflow can produce terminal wind velocities far in excess of the surface escape velocity. Disregarding this aspect in the analyses of wind ram pressures leads to overestimations of stellar mass loss rates. The predicted mass loss rates of cool main-sequence stars do not exceed about ten times the solar value. Our results are in contrast with previous investigations, which found a strong increase of the stellar mass loss rates with the coronal X-ray flux. Owing to the weaker dependence, we expect the impact of stellar winds on planetary atmospheres to be less severe and the detectability of magnetospheric radio emission to be lower then previously suggested. Considering the rotational evolution of a one solar-mass star, the mass loss rates and the wind ram pressures are highest during the pre-main sequence phase

    Exoplanet Transit Variability: Bow Shocks and Winds Around HD 189733b

    Full text link
    By analogy with the solar system, it is believed that stellar winds will form bow shocks around exoplanets. For hot Jupiters the bow shock will not form directly between the planet and the star, causing an asymmetric distribution of mass around the exoplanet and hence an asymmetric transit. As the planet orbits thorough varying wind conditions, the strength and geometry of its bow shock will change, thus producing transits of varying shape. We model this process using magnetic maps of HD 189733 taken one year apart, coupled with a 3D stellar wind model, to determine the local stellar wind conditions throughout the orbital path of the planet. We predict the time-varying geometry and density of the bow shock that forms around the magnetosphere of the planet and simulate transit light curves. Depending on the nature of the stellar magnetic field, and hence its wind, we find that both the transit duration and ingress time can vary when compared to optical light curves. We conclude that consecutive near-UV transit light curves may vary significantly and can therefore provide an insight into the structure and evolution of the stellar wind.Comment: 9 Pages, 7 figures. Accepted for publication in Monthly Notices of The Royal Astronomical Societ

    Isolation of 10 cyclosporine metabolites from human bile

    Get PDF
    Ten metabolites of cyclosporine were isolated from the ethyl ether extract of bile from four liver transplant patients receiving cyclosporine. Two of the metabolites were unique and previously unidentified. Liquid-liquid partitioning into diethyl ether with subsequent defatting with n-hexane was used for the initial extraction form bile. Separation of the individual metabolites (A-J) was performed using a Sephadex LH-20 column and a gradient high performance liquid chromatographic method. The molecular weights of the isolated metabolites were determined by fast atom bombardment/mass spectrometry. Gas chromatography with mass spectrometic amino acid analysis was also used to identify the amino acid composition and the hydroxylation position of metabolites A, B, C, D, and G. Proton nuclear magnetic resonance spectra were utilized to disinguish the chemical shifts of N-CH3 singlets and NH doublets of metabolites A, B, C, and D. Metabolites A, E, F, H, I, and J were reported previously in human urine and animal bile. Metabolites C and D are dihydroxylated compounds which cannot be clearly described as previously isolated compounds. Metabolites B and G are novel metabolites with a mass fragment which corresponded to a loss of 131 Da from the protonated molecular ion (MH+) in the fast atom bombardment/mass spectrometry, suggesting that the double bond in amino acid 1 has been modified. Metabolites B and G were primarily isolated from the bile of one of the liver transplant patients which contained abnormally high concentrations of these two metabolites. The method described is an efficient procedure for isolating milligram quantities of the major metabolites with greater than 95% purity

    Research to improve the design of driven pile foundations in chalk: the ALPACA project

    Get PDF
    Large numbers of offshore wind turbines, near-shore bridges and port facilities are supported by driven piles. The design and installation of such piles is often problematic in Chalk, a low-density, porous, weak carbonate rock, which is present under large areas of NW Europe. There is little guidance available to designers on driveability, axial capacity, the lateral pile resistance which dominates offshore wind turbine monopile behaviour, or on how piles can sustain axial or lateral cyclic loading. This paper describes the ALPACA project which involves comprehensive field testing at a low-to-medium density chalk research test site. The project is developing new design guidance through comprehensive field testing and analysis combined with in-situ testing campaigns and advanced static-and-cyclic laboratory testing on high quality block and rotary core samples

    Considerações Sobre o Bioetanol Lignocelulósico para Subsidiar a Elaboração de Conteúdo da Árvore do Conhecimento Agroenergia.

    Get PDF
    De acordo com a previsão da Agência Internacional de Energia (AIE) até o ano de 2030, os biocombustíveis representarão cerca de 7% do combustível utilizado no transporte, sendo a União Européia, os Estados Unidos e o Brasil os principais produtores e consumidores. Esse crescimento no mercado internacional é esperado devido ao aumento do preço do petróleo e, também porque os países desenvolvidos que assinaram o Protocolo de Kyoto se comprometeram a reduzir suas emissões de gases poluentes (BRASIL, 2005). Os constantes conflitos envolvendo os países do Oriente Médio, que estão nas regiões das reservas de petróleo, causam instabilidade ao suprimento e oscilações nos preços dos combustíveis fósseis, forçando vários países a buscarem alternativas que possibilitem reduzir a dependência em relação às importações desse produto. Todos esses fatores, cuja importância varia de país para país, vêm criando oportunidades para a viabilização econômica de novas fontes de energia de biomassa. O uso do etanol, biodiesel, carvão vegetal, biogás e energia obtida a partir de resíduos do agronegócio desperta interesse crescente em muitos países, não restando dúvidas de que ocupará posição de destaque na economia mundial no futuro próximo. O bioetanol pode ser obtido de diferentes matérias-primas, cada qual com um custo de produção e um valor de venda.bitstream/item/17345/1/doc95.pd
    corecore