46 research outputs found

    Is pollen size a robust proxy for moisture availability?

    Get PDF
    The development of well-constrained palaeo-proxies that enable the reconstruction of past climate change is becoming an ever more important field of scientific enquiry within the palaeobotanical community, with the potential to deliver broader impacts linked to understanding of future anthropogenic climate change. One of the major uncertainties in predicting climate change is how the hydrological cycle will respond to future warming. Griener and Warny (2015, Review of Palaeobotany and Palynology 221, 138-143) suggested that pollen size might be a useful proxy for tracking moisture availability, as pollen size appears to be negatively correlated with moisture. Given the long fossil record of pollen and spores such a proxy would have broad scope and the potential to deliver much needed information. Here we set out to fully evaluate and test the robustness of this proxy. We focus on a number of a key issues: controls on pollen size, data analysis, and finally proxy validation. Using this approach we find that there is little theoretical or empirical support for the original relationship proposed by Griener and Warny. Consequently it is currently premature to use pollen size as a moisture availability proxy in the fossil record. However, we recognise that the technique may have potential and conclude by offering a series of recommendations that would rigorously assess and test for a relationship between pollen size and moisture availability

    A 23 m.y. record of low atmospheric CO2: Comment

    Get PDF

    Ginkgo leaf cuticle chemistry across changing pCO2 regimes

    Get PDF
    Cuticles have been a key part of palaeobotanical research since the mid-19th Century. Recently, cuticular research has moved beyond morphological traits to incorporate the chemical signature of modern and fossil cuticles, with the aim of using this as a taxonomic and classification tool. For this approach to work, cuticle chemistry would have to maintain a strong taxonomic signal, with a limited input from the ambient environment in which the plant grew. Here, we use attenuated total reflectance Fourier Transform infrared (ATR-FTIR) spectroscopy to analyse leaf cuticles from Ginkgo biloba plants grown in experimentally enhanced CO2 conditions, to test for the impact of changing CO2 regimes on cuticle chemistry. We find limited evidence for an impact of CO2 on the chemical signature of Ginkgo cuticles, with more pronounced differences demonstrated between the abaxial (lower leaf surface) and adaxial (upper leaf surface) cuticles. These findings support the use of chemotaxonomy for plant cuticular remains across geological timescales, and the concomitant large-scale variations in CO2 concentrations

    Why does pollen morphology vary? Evolutionary dynamics and morphospace occupation in the largest angiosperm order (Asterales)

    Get PDF
    Morphological diversity (disparity) is a key component of biodiversity and increasingly a focus of botanical research. Despite the wide range of morphologies represented by pollen grains, to date there are few studies focused on the controls on pollen disparity and morphospace occupation, and fewer still considering these parameters in a phylogenetic framework. Here, we analyse morphospace occupation, disparity and rates of morphological evolution in Asterales pollen, in a phylogenetic context. We use a dataset comprising 113 taxa from across the Asterales phylogeny, with pollen morphology described using 28 discrete characters. The Asterales pollen morphospace is phylogenetically structured around groups of related taxa, consistent with punctuated bursts of morphological evolution at key points in the Asterales phylogeny. There is no substantial difference in disparity among these groups of taxa, despite large differences in species richness and biogeographic range. There is also mixed evidence for whole-genome duplication as a driver of Asterales pollen morphological evolution. Our results highlight the importance of evolutionary history for structuring pollen morphospace. Our study is consistent with others that have shown a decoupling of biodiversity parameters, and reinforces the need to focus on disparity as a key botanical metric in its own right.Fil: Jardine, Phillip E.. University Of Munster; AlemaniaFil: Palazzesi, Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Tellería, María Cristina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Barreda, Viviana Dora. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentin

    The impact of oxidation on spore and pollen chemistry

    Get PDF
    Sporomorphs (pollen and spores) have an outer wall composed of sporopollenin. Sporopollenin chemistry contains both a signature of ambient ultraviolet-B flux and taxonomic information, but it is currently unknown how sensitive this is to standard palynological processing techniques. Oxidation in particular is known to cause physical degradation to sporomorphs, and it is expected that this should have a concordant impact on sporopollenin chemistry. Here, we test this by experimentally oxidizing Lycopodium (clubmoss) spores using two common oxidation techniques: acetolysis and nitric acid. We also carry out acetolysis on eight angiosperm (flowering plant) taxa to test the generality of our results. Using Fourier Transform infrared (FTIR) spectroscopy, we find that acetolysis removes labile, non-fossilizable components of sporomorphs, but has a limited impact upon the chemistry of sporopollenin under normal processing durations. Nitric acid is more aggressive and does break down sporopollenin and reorganize its chemical structure, but when limited to short treatments (i.e. ≤10 min) at room temperature sporomorphs still contain most of the original chemical signal. These findings suggest that when used carefully oxidation does not adversely affect sporopollenin chemistry, and that palaeoclimatic and taxonomic signatures contained within the sporomorph wall are recoverable from standard palynological preparations

    Proxy reconstruction of ultraviolet-B irradiance at the Earth’s surface, and its relationship with solar activity and ozone thickness

    Get PDF
    Solar ultraviolet-B (UV-B) irradiance that reaches the Earth’s surface acts as a biotic stressor and has the potential to modify ecological and environmental functioning. The challenges of reconstructing ultraviolent (UV) irradiance prior to the satellite era mean that there is uncertainty over long-term surface UV-B patterns, especially in relation to variations in solar activity over centennial and millennial timescales. Here, we reconstruct surface UV-B irradiance over the last 650 years using a novel UV-B proxy based on the chemical signature of pollen grains. We demonstrate a statistically significant positive relationship between the abundance of UV-B absorbing compounds in Pinus pollen and modelled solar UV-B irradiance. These results show that trends in surface UV-B follow the overall solar activity pattern over centennial timescales, and that variations in solar output are the dominant control on surface level UV-B flux, rather than solar modulated changes in ozone thickness. The Pinus biochemical response demonstrated here confirms the potential for solar activity driven surface UV-B variations to impact upon terrestrial biotas and environments over long timescales

    Chemotaxonomy as a tool for interpreting the cryptic diversity of Poaceae pollen

    Get PDF
    The uniform morphology of different species of Poaceae (grass) pollen means that identification to below family level using light microscopy is extremely challenging. Poor taxonomic resolution reduces recoverable information from the grass pollen record, for example, species diversity and environmental preferences cannot be extracted. Recent research suggests Fourier Transform Infra-red Spectroscopy (FTIR) can be used to identify pollen grains based on their chemical composition. Here, we present a study of twelve species from eight subfamilies of Poaceae, selected from across the phylogeny but from a relatively constrained geographical area (tropical West Africa) to assess the feasibility of using this chemical method for identification within the Poaceae family. We assess several spectral processing methods and use K-nearest neighbour (k-nn) analyses, with a leave-one-out cross-validation, to generate identification success rates at different taxonomic levels. We demonstrate we can identify grass pollen grains to subfamily level with an 80% success rate. Our success in identifying Poaceae to subfamily level using FTIR provides an opportunity to generate high taxonomic resolution datasets in research areas such as palaeoecology, forensics, and melissopalynology quickly and at a relatively low cost

    Paleoecologic and paleoceanographic interpretation of δ18O variability in Lower Ordovician conodont species

    Get PDF
    Conodont δ18O is increasingly used to reconstruct Paleozoic–Triassic seawater temperature changes. Less attention has been paid to δ18O variation in time slices across paleoenvironments, within sample assemblages, or for reconstructing the thermal structure of Paleozoic oceans. Furthermore, there have been few independent tests of conodont ecologic models based on biofacies and lithofacies distributions. Here we present the rst test of ecologic models for conodonts based on δ18O values of a Laurentian Lower Ordovician (Floian) shelf edge–upper slope assemblage in debrites of the proximal lower slope Shallow Bay Formation, Cow Head Group, western Newfoundland. Nine species yield a 1.6–1.8‰ intra-sample δ18O variability based on mixed tissue and white matter-only analyses, equivalent to an ~7–8 °C range. Lin- ear mixed models demonstrate statistically signi cant differences between the δ18O of some species, supporting the interpretation that an isotopic and temperature gradient is preserved. By considering conodont δ18O in a geologic context, we propose an integrated paleoecologic and paleoceanographic model with species tiered pelagically through the water column, and con rm the utility of conodonts for water-mass characterization within Paleozoic oceans

    Variability in modern pollen rain from moist and wet tropical forest plots in Ghana, West Africa

    Get PDF
    How pollen moves within and between ecosystems affects factors such as the genetic structure of populations, how resilient they are to environmental change, and the amount and nature of pollen preserved in the sedimentary record. We set artificial pollen traps in two 100 m by 100 m vegetation plots, one in a wet evergreen forest, and one in a moist semi-deciduous forest in Ghana, West Africa. Five traps from each plot were counted annually from 2011 to 2014, to examine spatial and temporal variation in the pollen rain of the most abundant taxa shared between pollen and vegetation assemblages. Samples from the wet evergreen plot exhibited high variability within years, with the dominant pollen types changing between samples, and many pollen taxa being over-represented relative to their parent plant abundance in some traps whilst being entirely absent from others. The most abundant plant taxa of the wet evergreen plot (Drypetes and Cynometra) do, however, constitute major components of the pollen rain. There is less variation between samples from the moist semi-deciduous plot spatially, as it is dominated by Celtis, which typically comprises >70% of the pollen assemblages. We conclude that pollen rain in these tropical ecosystems is highly heterogeneous, and suggest that pollen assemblages obtained by trapping are susceptible to small-scale variations in forest structure. Conversely, this may mean that current recommendations of more than three years of trapping in tropical systems may be too high, and that space could substitute for time in modern tropical pollen trapping

    Chemotaxonomy of domesticated grasses: a pathway to understanding the origins of agriculture

    Get PDF
    The grass family (Poaceae) is one of the most economically important plant groups in the world today. In particular many major food crops, including rice, wheat, maize, rye, barley, oats and millet, are grasses that were domesticated from wild progenitors during the Holocene. Archaeological evidence has provided key information on 15 domestication pathways of different grass lineages through time and space. However, the most abundant empirical archive of floral change-the pollen record-has been underused for reconstructing grass domestication patterns, because of the challenges of classifying grass pollen grains based on their morphology alone. Here, we test the potential of a novel approach for pollen classification based on the chemical signature of the pollen grains, measured using Fourier Transform infrared (FTIR) microspectroscopy. We use a dataset of eight domesticated and wild grass species, classified using k-nearest 20 neighbour classification coupled with leave one out cross validation. We demonstrate a 95% classification success rate on training data, and an 82% classification success rate on validation data. This result shows that FTIR spectroscopy can provide enhanced taxonomic resolution enabling species level assignment from pollen. This will enable the full testing of the timing and drivers of domestication and agriculture through the Holocene
    corecore