A 23 m.y. record of low atmospheric CO₂

Phillip E. Jardine¹ and Barry H. Lomax²

¹Institute of Geology and Palaeontology, University of Münster, 48149 Münster, Germany ²Agriculture and Environmental Science, University of Nottingham, Nottingham NG7 2RD, UK

In their recent paper, Cui et al. (2020) used a new iteration of their C₃ plant proxy to reconstruct pCO_2 over the last 23 Ma. The initial version of this proxy used carbon isotope discrimination (D¹³C, calculated as the offset between the d¹³C of plant tissue [d¹³C_p] and atmospheric CO₂ [d¹³C_{atm}]) to estimate paleo-CO₂ (Schubert and Jahren, 2015), but recent work by different research groups has questioned the utility of this proxy (e.g., Kohn, 2016; Stein et al., in press). Previously, we used D¹³C data from *Arabidopsis thaliana* plants grown experimentally under different moisture and pCO_2 conditions to show that this proxy is strongly impacted by variations in moisture availability and underpredicts pCO_2 (Lomax et al., 2019). Here, we argue that the new version of the C₃ proxy presented by Cui et al. (2020), which is centered on d¹³C_p rather than D¹³C, suffers from the same shortcomings. Therefore, it is unsuitable for addressing the core question posed in their paper, that is, how pCO_2 levels in the geological past compare with those both in the present and predicted for the near future.

Using the new d¹³C_p proxy to reconstruct *p*CO₂ from our existing *A. thaliana* data set (Jardine and Lomax, 2020; Lomax et al., 2019) shows that, like its predecessor, this proxy underestimates *p*CO₂ (Fig. 1A), although the effect is even more pronounced than previously (Fig. 1B). The proxy struggles to successfully predict *p*CO₂ for plants grown in >400 ppm conditions, which is particularly problematic because this is the core threshold for assessing whether past *p*CO₂ values exceed those of today. *p*CO₂ estimates are likely lower in this iteration of the proxy because rather than deriving a new relationship between d¹³C_p and *p*CO₂, Cui et al. (2020) used the model parameters (the A, B and C terms) from their D¹³C: *p*CO₂ curve (Schubert and Jahren, 2015). However, the d¹³C_{anomaly} term of Cui et al. (2020; see their Equations 1 and 2) does not equal the D(D¹³C) term of Schubert and Jahren (2015; see their Equations 1 and 4) (Fig. 1C). The result is that *p*CO₂ predicted from d¹³C_p is even lower than *p*CO₂ predicted from D¹³C, with the downward bias becoming particularly apparent at *p*CO₂ > 400 ppm (Fig. 1B).

As with the D¹³C version of the C₃ proxy, the new d¹³C-based proxy is impacted by moisture availability, especially at higher pCO_2 levels (Fig. 1A). This is a critical issue in the timeseries presented by Cui et al. (2020), because hydrological changes are likely to have accompanied pCO_2 -driven temperature changes, for instance across the mid-Miocene Climatic Optimum, ~17–14 Ma (Loughney et al., 2020). The extent to which the increase in pCO_2 reconstructed for this time by Cui et al. (2020) (Fig. 1D) is due to increases in moisture availability cannot be evaluated with this proxy, nor can the impact of long-term continental drying through the late Neogene on the overall downward pCO_2 trend.

Cui et al. (2020) used Monte Carlo resampling to quantify uncertainty in their pCO_2 reconstruction, and presented these uncertainties via a LOWESS smoother with a 68% confidence interval. A 68% confidence interval represents an abnormally low level of statistical confidence, and is too narrow to robustly determine whether pCO_2 values in the past exclude today's levels or those of the future. Plotting 95% confidence intervals (and therefore utilizing the usual a = 0.05 level for statistical inference) shows that pCO_2 values of >500 ppm are entirely consistent with Cui et al.'s reconstruction for much of the last 23 Ma, including in the Pliocene and Pleistocene. The C₃ proxy therefore fails to reject elevated pCO_2 conditions for the late Neogene and Quaternary, despite the downward biasing in the pCO_2 estimates themselves (Fig. 1D).

Understanding the relationship between pCO_2 and global climate is vital for forecasting the response of the climate system to anthropogenic CO_2 emissions. As such, pCO_2 proxies are essential, but they need to be robust and thoroughly validated. Terrestrial fossil organic carbon may be ubiquitous in sediments, but because of impact of moisture availability on $d^{13}C_p$, and the inadequately derived relationship between $d^{13}C_p$ and pCO_2 used by Cui et al. (2020), we maintain (Lomax et al., 2019) that the C₃ proxy is not suitable for reconstructing pCO_2 in the geological past.

REFERENCES CITED

- Cui, Y., Schubert, B.A., and Jahren, A.H., 2020, A 23 m.y. record of low atmospheric CO₂: Geology, v. 48, p. 888–892, <u>https://doi.org/10.1130/G47681.1</u>.
- Jardine, P. E., and Lomax, B. H., 2020 Data and code for "A 23 m.y. record of low atmospheric CO₂: Comment: Geology, v. 48, p.": Figshare, https://doi .org/10.6084/m9.figshare.13194554
- Kohn, M.J., 2016, Carbon isotope discrimination in C₃ land plants is independent of natural variations in *p*CO₂: Geochemical Perspectives Letters, v. 2, p. 35–43, <u>https://doi.org/10.7185/geochemlet.1604</u>.
- Lomax, B.H., Lake, J.A., Leng, M.J., and Jardine, P.E., 2019, An experimental evaluation of the use of D¹³C as a proxy for palaeoatmospheric CO₂: Geochimica et Cosmochimica Acta, v. 247, p. 162–174, https://doi.org/10.1016/j.gca.2018.12.026.
- Loughney, K.M., Hren, M.T., Smith, S.Y., and Pappas, J.L., 2020, Vegetation and habitat change in southern California through the Middle Miocene Climatic Optimum: Paleoenvironmental records from the Barstow Formation, Mojave Desert, USA: Geological Society of America Bulletin, v. 132, p. 113–129, <u>https://doi.org/10.1130/B35061.1</u>.
- Schubert, B.A., and Jahren, A.H., 2015, Global increase in plant carbon isotope fractionation following the Last Glacial Maximum caused by increase in atmospheric *p*CO₂: Geology, v. 43, p. 435–438, <u>https://doi.org/10.1130</u>
 - <u>/G36467.1</u>.
- Stein, R.A., Sheldon, N.D., and Smith, S.Y., C₃ plant carbon isotope discrimination does not respond to CO₂ concentration on decadal to centennial timescales: The New Phytologist, https://doi.org/10.1111/nph.17030 (in press)

 $\frac{1}{2}$ J using the d¹³C_p-based C₃ proxy \Rightarrow data set of Lomax et al. (2019).

Points are colored by water treatment. (B) Comparison of estimated pCO_2 using the D¹³C-based C₃ proxy of Schubert and Jahren (2015) and the d¹³C_p-based C₃ proxy of Cui et al. (2020). (C) Comparison of the D(D¹³C) term of Schubert and Jahren (2015) and the d¹³C_{anomaly} term of Cui et al. (2020). (D) The time series presented by Cui et al. (2020), based on their d¹³C_p-based C₃ proxy, with a LOESS smoother and both 68% and 95% confidence intervals.