47 research outputs found
Use of a total traffic count metric to investigate the impact of roadways on asthma severity: A case-control study
Background: This study had two principal objectives: (i) to investigate the relationship between asthma severity and proximity to major roadways in Perth, Western Australia; (ii) to demonstrate a more accurate method of exposure assessment for traffic pollutants using an innovative GIS-based measure that fully integrates all traffic densities around subject residences. Methods. We conducted a spatial case-control study, in which 'cases' were defined as individuals aged under 19 years of age with more severe asthma (defined here as two or more emergency department contacts with asthma in a defined 5-year period) versus age- and gender-matched 'controls' with less severe asthma (defined here as one emergency department contact for asthma). Traffic exposures were measured using a GIS-based approach to determine the lengths of the roads falling within a buffer area, and then multiplying them by their respective traffic counts. Results: We examined the spatial relationship between emergency department contacts for asthma at three different buffer sizes: 50 metres, 100 metres and 150 metres. No effect was noted for the 50 metre buffer (OR = 1.07; 95% CI: 0.91-1.26), but elevated odds ratios were observed with for crude (unadjusted) estimates OR = 1.21 (95% CI: 1.00-1.46) for 100 metre buffers and OR = 1.25 (95% CI: 1.02-1.54) for 150 metre buffers. For adjusted risk estimates, only the 150 metre buffer yielded a statistically significant finding (OR = 1.24; 95% CI:1.00-1.52). Conclusions: Our study revealed a significant 24% increase in the risk of experiencing multiple emergency department contacts for asthma for every log-unit of traffic exposure. This study provides support for the hypothesis that traffic related air pollution increases the frequency of health service contacts for asthma. This study used advanced GIS techniques to establish traffic-weighted buffer zones around the geocoded residential location of subjects to provide an accurate assessment of exposure to traffic emissions, thereby providing a quantification of the ranges over which pollutants may exert a health effect
Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
Dendritic cells (DCs) and monocytes play a central role in pathogen sensing, phagocytosis, and antigen presentation and consist of multiple specialized subtypes. However, their identities and interrelationships are not fully understood. Using unbiased single-cell RNA sequencing (RNA-seq) of ~2400 cells, we identified six human DCs and four monocyte subtypes in human blood. Our study reveals a new DC subset that shares properties with plasmacytoid DCs (pDCs) but potently activates T cells, thus redefining pDCs; a new subdivision within the CD1C+ subset of DCs; the relationship between blastic plasmacytoid DC neoplasia cells and healthy DCs; and circulating progenitor of conventional DCs (cDCs). Our revised taxonomy will enable more accurate functional and developmental analyses as well as immune monitoring in health and disease
Deleterious effects of phosphate on vascular and endothelial function via disruption to the nitric oxide pathway
Background: Hyperphosphataemia is an independent risk factor for accelerated cardiovascular disease in chronic kidney disease (CKD), although the mechanism for this is poorly understood. We investigated the effects of sustained exposure to a high-phosphate environment on endothelial function in cellular and preclinical models, as well as in human subjects.
Methods: Resistance vessels from rats and humans (± CKD) were incubated in a normal (1.18 mM) or high (2.5 mM) phosphate concentration solution and cells were cultured in normal- (0.5 mM) or high-phosphate (3 mM) concentration media. A single-blind crossover study was performed in healthy volunteers, receiving phosphate supplements or a phosphate binder (lanthanum), and endothelial function measured was by flow-mediated dilatation.
Results: Endothelium-dependent vasodilatation was impaired when resistance vessels were exposed to high phosphate; this could be reversed in the presence of a phosphodiesterase-5-inhibitor. Vessels from patients with CKD relaxed normally when incubated in normal-phosphate conditions, suggesting that the detrimental effects of phosphate may be reversible. Exposure to high-phosphate disrupted the whole nitric oxide pathway with reduced nitric oxide and cyclic guanosine monophosphate production and total and phospho endothelial nitric oxide synthase expression. In humans, endothelial function was reduced by chronic phosphate loading independent of serum phosphate, but was associated with higher urinary phosphate excretion and serum fibroblast growth factor 23.
Conclusions: These directly detrimental effects of phosphate, independent of other factors in the uraemic environment, may explain the increased cardiovascular risk associated with phosphate in CKD
Effectiveness of EDACS Versus ADAPT Accelerated Diagnostic Pathways for Chest Pain: A Pragmatic Randomized Controlled Trial Embedded Within Practice
Study objective
A 2-hour accelerated diagnostic pathway based on the Thrombolysis in Myocardial Infarction score, ECG, and troponin measures (ADAPT-ADP) increased early discharge of patients with suspected acute myocardial infarction presenting to the emergency department compared with standard care (from 11% to 19.3%). Observational studies suggest that an accelerated diagnostic pathway using the Emergency Department Assessment of Chest Pain Score (EDACS-ADP) may further increase this proportion. This trial tests for the existence and size of any beneficial effect of using the EDACS-ADP in routine clinical care.
Methods
This was a pragmatic randomized controlled trial of adults with suspected acute myocardial infarction, comparing the ADAPT-ADP and the EDACS-ADP. The primary outcome was the proportion of patients discharged to outpatient care within 6 hours of attendance, without subsequent major adverse cardiac event within 30 days.
Results
Five hundred fifty-eight patients were recruited, 279 in each arm. Sixty-six patients (11.8%) had a major adverse cardiac event within 30 days (ADAPT-ADP 29; EDACS-ADP 37); 11.1% more patients (95% confidence interval 2.8% to 19.4%) were identified as low risk in EDACS-ADP (41.6%) than in ADAPT-ADP (30.5%). No low-risk patients had a major adverse cardiac event within 30 days (0.0% [0.0% to 1.9%]). There was no difference in the primary outcome of proportion discharged within 6 hours (EDACS-ADP 32.3%; ADAPT-ADP 34.4%; difference â2.1% [â10.3% to 6.0%], P=.65).
Conclusion
There was no difference in the proportion of patients discharged early despite more patients being classified as low risk by the EDACS-ADP than the ADAPT-ADP. Both accelerated diagnostic pathways are effective strategies for chest pain assessment and resulted in an increased rate of early discharges compared with previously reported rates
The impact of donor and recipient common clinical and genetic variation on estimated glomerular filtration rate in a European renal transplant population
Genetic variation across the HLA is known to influence renalâtransplant outcome. However, the impact of genetic variation beyond the HLA is less clear. We tested the association of common genetic variation and clinical characteristics, from both the donor and recipient, with postâtransplant eGFR at different timeâpoints, out to 5âyears postâtransplantation.
We conducted GWAS metaâanalyses across 10,844 donors and recipients from five European ancestry cohorts. We also analysed the impact of polygenic risk scores (PRS), calculated using genetic variants associated with nonâtransplant eGFR, on postâtransplant eGFR.
PRS calculated using the recipient genotype alone, as well as combined donor and recipient genotypes were significantly associated with eGFR at 1âyear postâtransplant. 32% of the variability in eGFR at 1âyear postâtransplant was explained by our model containing clinical covariates (including weights for death/graftâfailure), principal components and combined donorârecipient PRS, with 0.3% contributed by the PRS. No individual genetic variant was significantly associated with eGFR postâtransplant in the GWAS.
This is the first study to examine PRS, composed of variants that impact kidney function in the general population, in a postâtransplant context. Despite PRS being a significant predictor of eGFR postâtransplant, the effect size of common genetic factors is limited compared to clinical variables
Chronic kidney disease and arrhythmias: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference.
Patients with chronic kidney disease (CKD) are predisposed to heart rhythm disorders, including atrial fibrillation (AF)/atrial flutter, supraventricular tachycardias, ventricular arrhythmias, and sudden cardiac death (SCD). While treatment options, including drug, device, and procedural therapies, are available, their use in the setting of CKD is complex and limited. Patients with CKD and end-stage kidney disease (ESKD) have historically been under-represented or excluded from randomized trials of arrhythmia treatment strategies,1 although this situation is changing.2 Cardiovascular society consensus documents have recently identified evidence gaps for treating patients with CKD and heart rhythm disorders [...
Recommended from our members
Decoding human fetal liver haematopoiesis.
Definitive haematopoiesis in the fetal liver supports self-renewal and differentiation of haematopoietic stem cells and multipotent progenitors (HSC/MPPs) but remains poorly defined in humans. Here, using single-cell transcriptome profiling of approximately 140,000 liver and 74,000 skin, kidney and yolk sac cells, we identify the repertoire of human blood and immune cells during development. We infer differentiation trajectories from HSC/MPPs and evaluate the influence of the tissue microenvironment on blood and immune cell development. We reveal physiological erythropoiesis in fetal skin and the presence of mast cells, natural killer and innate lymphoid cell precursors in the yolk sac. We demonstrate a shift in the haemopoietic composition of fetal liver during gestation away from being predominantly erythroid, accompanied by a parallel change in differentiation potential of HSC/MPPs, which we functionally validate. Our integrated map of fetal liver haematopoiesis provides a blueprint for the study of paediatric blood and immune disorders, and a reference for harnessing the therapeutic potential of HSC/MPPs.We acknowledge funding from the Wellcome Human Cell Atlas Strategic Science Support (WT211276/Z/18/Z); M.H. is funded by Wellcome (WT107931/Z/15/Z), The Lister Institute for Preventive Medicine and NIHR and Newcastle-Biomedical Research Centre; S.A.T. is funded by Wellcome (WT206194), ERC Consolidator and EU MRG-Grammar awards and; S.B. is funded by Wellcome (WT110104/Z/15/Z) and St. Baldrickâs Foundation; E.L. is funded by a Wellcome Sir Henry Dale and Royal Society Fellowships, European Haematology Association, Wellcome and MRC to the Wellcome-MRC Cambridge Stem Cell Institute and BBSRC
Single-cell multi-omics analysis of the immune response in COVID-19
Peer reviewedPublisher PD
Molecular Evolution of Broadly Neutralizing Llama Antibodies to the CD4-Binding Site of HIV-1
To date, no immunization of humans or animals has elicited broadly neutralizing sera able to prevent HIV-1 transmission; however, elicitation of broad and potent heavy chain only antibodies (HCAb) has previously been reported in llamas. In this study, the anti-HIV immune responses in immunized llamas were studied via deep sequencing analysis using broadly neutralizing monoclonal HCAbs as a guides. Distinct neutralizing antibody lineages were identified in each animal, including two defined by novel antibodies (as variable regions called VHH) identified by robotic screening of over 6000 clones. The combined application of five VHH against viruses from clades A, B, C and CRF_AG resulted in neutralization as potent as any of the VHH individually and a predicted 100% coverage with a median IC50 of 0.17 ”g/ml for the panel of 60 viruses tested. Molecular analysis of the VHH repertoires of two sets of immunized animals showed that each neutralizing lineage was only observed following immunization, demonstrating that they were elicited de novo. Our results show that immunization can induce potent and broadly neutralizing antibodies in llamas with features similar to human antibodies and provide a framework to analyze the effectiveness of immunization protocols