113 research outputs found

    A geometrically constrained multimodal time domain approach for convolutive blind source separation

    Get PDF
    A novel time domain constrained multimodal approach for convolutive blind source separation is presented which incorporates geometrical 3-D cordinates of both the speakers and the microphones. The semi-blind separation is performed in time domain and the constraints are incorporated through an alternative least squares optimization. Orthogonal source model and gradient based optimization concepts have been used to construct and estimate the model parameters which fits the convolutive mixture signals. Moreover, the majorization concept has been used to incorporate the geometrical information for estimating the mixing channels for different time lags. The separation results show a considerable improvement over time domain convolutive blind source separation systems. Having diagonal or quasi diagonal covariance matrices for different source segments and also having independent profiles for different sources (which implies nonstationarity of the sources) are the requirements for our method. We evaluated the method using synthetically mixed real signals. The results show high capability of the method for separating speech signals. © 2011 EURASIP

    Smart Multimodal In-Bed Pose Estimation Framework Incorporating Generative Adversarial Neural Network

    Get PDF
    Monitoring in-bed pose estimation based on the Internet of Medical Things (IoMT) and ambient technology has a significant impact on many applications such as sleep-related disorders including obstructive sleep apnea syndrome, assessment of sleep quality, and health risk of pressure ulcers. In this research, a new multimodal in-bed pose estimation has been proposed using a deep learning framework. The Simultaneously-collected multimodal Lying Pose (SLP) dataset has been used for performance evaluation of the proposed framework where two modalities including long wave infrared (LWIR) and depth images are used to train the proposed model. The main contribution of this research is the feature fusion network and the use of a generative model to generate RGB images having similar poses to other modalities (LWIR/depth). The inclusion of a generative model helps to improve the overall accuracy of the pose estimation algorithm. Moreover, the method can be generalized for situations to recover human pose both in home and hospital settings under various cover thickness levels. The proposed model is compared with other fusion-based models and shows an improved performance of 97.8% at [email protected]. In addition, performance has been evaluated for different cover conditions, and under home and hospital environments which present improvements using our proposed model

    Eeg Connectivity - Informed Cooperative Adaptive Line Enhancer for Recognition of Brain State

    Get PDF
    Bursts of sleep spindles and paroxysmal fast brain activity waveforms have frequency overlap whilst generally, paroxysmal waveforms have shorter duration than spindles. Both resemble bursts of normal alpha activity during short rests while awake with closed eyes. In this paper, it is shown that for a proposed cooperative adaptive line enhancer, which can both detect and separate such periodic bursts, the combination weights are consistently different from each other. The outcome suggests that for accurate modelling of the brain neuro-generators, the brain connectivity has to be precisely estimated and plugged into the adaptation process

    A Deep Learning Architecture with Spatio-Temporal Focusing for Detecting Respiratory Anomalies

    Full text link
    This paper presents a deep learning system applied for detecting anomalies from respiratory sound recordings. Our system initially performs audio feature extraction using Continuous Wavelet transformation. This transformation converts the respiratory sound input into a two-dimensional spectrogram where both spectral and temporal features are presented. Then, our proposed deep learning architecture inspired by the Inception-residual-based backbone performs the spatial-temporal focusing and multi-head attention mechanism to classify respiratory anomalies. In this work, we evaluate our proposed models on the benchmark SPRSound (The Open-Source SJTU Paediatric Respiratory Sound) database proposed by the IEEE BioCAS 2023 challenge. As regards the Score computed by an average between the average score and harmonic score, our robust system has achieved Top-1 performance with Scores of 0.810, 0.667, 0.744, and 0.608 in Tasks 1-1, 1-2, 2-1, and 2-2, respectively.Comment: arXiv admin note: text overlap with arXiv:2303.0410

    Description of a Database Containing Wrist PPG Signals Recorded during Physical Exercise with Both Accelerometer and Gyroscope Measures of Motion

    Get PDF
    Wearable heart rate sensors such as those found in smartwatches are commonly based upon Photoplethysmography (PPG) which shines a light into the wrist and measures the amount of light reflected back. This method works well for stationary subjects, but in exercise situations, PPG signals are heavily corrupted by motion artifacts. The presence of these artifacts necessitates the creation of signal processing algorithms for removing the motion interference and allowing the true heart related information to be extracted from the PPG trace during exercise. Here, we describe a new publicly available database of PPG signals collected during exercise for the creation and validation of signal processing algorithms extracting heart rate and heart rate variability from PPG signals. PPG signals from the wrist are recorded together with chest electrocardiography (ECG) to allow a reference/comparison heart rate to be found, and the temporal alignment between the two signal sets is estimated from the signal timestamps. The new database differs from previously available public databases because it includes wrist PPG recorded during walking, running, easy bike riding and hard bike riding. It also provides estimates of the wrist movement recorded using a 3-axis low-noise accelerometer, a 3-axis wide-range accelerometer, and a 3-axis gyroscope. The inclusion of gyroscopic information allows, for the first time, separation of acceleration due to gravity and acceleration due to true motion of the sensor. The hypothesis is that the improved motion information provided could assist in the development of algorithms with better PPG motion artifact removal performance

    An Inception-Residual-Based Architecture with Multi-Objective Loss for Detecting Respiratory Anomalies

    Full text link
    This paper presents a deep learning system applied for detecting anomalies from respiratory sound recordings. Initially, our system begins with audio feature extraction using Gammatone and Continuous Wavelet transformation. This step aims to transform the respiratory sound input into a two-dimensional spectrogram where both spectral and temporal features are presented. Then, our proposed system integrates Inception-residual-based backbone models combined with multi-head attention and multi-objective loss to classify respiratory anomalies. Instead of applying a simple concatenation approach by combining results from various spectrograms, we propose a Linear combination, which has the ability to regulate equally the contribution of each individual spectrogram throughout the training process. To evaluate the performance, we conducted experiments over the benchmark dataset of SPRSound (The Open-Source SJTU Paediatric Respiratory Sound) proposed by the IEEE BioCAS 2022 challenge. As regards the Score computed by an average between the average score and harmonic score, our proposed system gained significant improvements of 9.7%, 15.8%, 17.8%, and 16.1% in Task 1-1, Task 1-2, Task 2-1, and Task 2-2, respectively, compared to the challenge baseline system. Notably, we achieved the Top-1 performance in Task 2-1 and Task 2-2 with the highest Score of 74.5% and 53.9%, respectively

    Gait parameter estimation from a miniaturized ear-worn sensor using singular spectrum analysis and longest common subsequence

    Get PDF
    This paper presents a new approach to gait analysis and parameter estimation from a single miniaturised earworn sensor embedded with a triaxial accelerometer. Singular spectrum analysis (SSA) combined with the longest common subsequence (LCSS) algorithm has been used as a basis for gait parameter estimation. It incorporates information from all axes of the accelerometer to estimate parameters including swing, stance and stride times. Rather than only using local features of the raw signals, the periodicity of the signals is also taken into account. The hypotheses tested by this study include: 1) how accurate is the ear-worn sensor in terms of gait parameter extraction compared to the use of an instrumented treadmill; 2) does the ear-worn sensor provide a feasible option for assessment and quantification of gait pattern changes. Key gait events for normal subjects such as heel contact and toe off are validated with a high-speed camera, as well as a force-plate instrumented treadmill. Ten healthy adults walked for 20 minutes on a treadmill with an increasing incline of 2% every 2 minutes. The upper and lower limits of the absolute errors using 95% confidence intervals for swing, stance and stride times were obtained as 35.5±3.99ms, 36.9 ± 3.84ms, and 17.9 ± 2.29ms, respectively
    corecore