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Abstract—Monitoring in-bed pose estimation based on the
Internet of Medical Things (IoMT) and ambient technology
has a significant impact on many applications such as sleep-
related disorders including obstructive sleep apnea syndrome,
assessment of sleep quality, and health risk of pressure ulcers. In
this research, a new multimodal in-bed pose estimation has been
proposed using a deep learning framework. The Simultaneously-
collected multimodal Lying Pose (SLP) dataset has been used
for performance evaluation of the proposed framework where
two modalities including long wave infrared (LWIR) and depth
images are used to train the proposed model. The main con-
tribution of this research is the feature fusion network and
the use of a generative model to generate RGB images having
similar poses to other modalities (LWIR/depth). The inclusion
of a generative model helps to improve the overall accuracy
of the pose estimation algorithm. Moreover, the method can be
generalized for situations to recover human pose both in home
and hospital settings under various cover thickness levels. The
proposed model is compared with other fusion-based models
and shows an improved performance of 97.8% at PCKh@0.5.
In addition, performance has been evaluated for different cover
conditions, and under home and hospital environments which
present improvements using our proposed model.

Index Terms—Internet of Medical Things, AI, SLP, Generative
adversarial neural network, LWIR, depth.

I. INTRODUCTION

In-bed pose estimation can monitor the quality of sleep
which is vital in several healthcare prognosis, diagnosis, and
therapy practices. According to research by [1], a poor in-
bed sleeping posture increases the chance of several medical
conditions like carpal tunnel syndrome, sleep apnea, and
pressure ulceration. Caregivers are extensively employed for
the estimation of in-bed postures based on visual inspection;
however, this process is tiresome, and the readings and eval-
uation techniques are subjective [2]. Wearable gadgets are
employed for tracking the quality and posture during sleep,
but these devices are intrusive in nature [3]. The advancements
in computer vision have empowered camera-based contactless
in-bed pose estimation techniques [4]. These methods require
less maintenance, are less expensive, and are comfortable for
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patients. Convolutional pose machines [5] have led the foun-
dation for several 2D and 3D human pose estimation methods
[6] [7]. However, the accuracy of in-bed pose estimation by the
state-of-the-art (SOTA) method is hindered due to the presence
of heavy occlusion and extreme illumination [8].

Recent literature on pose estimation emphasises on
skeleton-based top-down methods because of their flexible
and easy representation [9]. Performance of SOTA methods
[10] [11] [12] for pose estimation is enhanced by adding a
multi-scale feature processing technique, where the features
at various scales are used in parallel. Over the last few years,
the high-resolution net (HRNet) [11] has gained substantial
popularity as not only it attains efficient training and inference
speed but also preserves high-quality features across the net-
work. Therefore, it has shown an enhanced localised accuracy
for pose estimation. Fine-tuning methods for in-bed pose
estimation have found several healthcare applications such as
fall risk assessment [13] and seizure disorder classification
[14]. These methods have showcased the potential impact
and versatility of in-bed human pose estimation in addressing
crucial healthcare challenges.

However, several challenges for developing in-bed human
pose monitoring algorithms still exist such as the selection
of the best data recording modality/modalities and a reliable
benchmark for validation purposes considering real-world en-
vironments. The Simultaneously-Collected Multimodal Lying
Pose Dataset (SLP) dataset [15] has been recently released
publicly where a large-scale benchmark was created including
various imaging modalities. The SLP dataset [15] consists
of simultaneous imagery from four modalities: Visual image
(RGB), Long wavelength Infrared (LWIR), depth and pressure
maps (PM). Moreover, in [15] a number of SOTA 2D human
pose estimation algorithms are evaluated for quantifying the
performance of in-bed human pose monitoring using the
SLP dataset. These algorithms are evaluated using a single
modality. Selection of the most favourable modality for pose
estimation might be difficult as RGB images become ineffi-
cient under occluded and illuminated conditions. Using LWIR,
it is possible to see under the cover but residual heat from
the body affects the thermal imagery. PMs are not affected
by residual heat, but it is difficult to recognise arms and
heel joints due to the lack of pressure concentration regions.
Depth might reconstruct an object’s geometry in illuminated
and occluded conditions, but they are affected by different
elevated areas due to specific in-bed poses. Moreover, LWIR
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and depth modalities are not as expensive as the PMs modality.
In-bed human pose estimation is challenging due to (i) the
presence of heavy occlusion (thin and thick cover), (ii) lack of
luminated environment, (iii) privacy concerns of the patients,
and (iv) expensive imaging tools and sensors. In recent studies,
contactless imaging such as using depth [16] and LWIR [17]
modalities have been used to infer contact pressure [17], [16]
as PMs are expensive and these studies found them not suitable
for continuous monitoring and everyday practice [16], [17].

The realistic way to overcome the modality selection issue
is by developing an effective pose estimation technique that
employs a feature fusion from privacy-protecting and inex-
pensive modalities such as LWIR and depth. These modal-
ities do not capture distinctive or identifying characteristics
related to face, clothing, or surrounding environment [18]. In
such cases, additional privacy-preservation measures are not
required contrary to the use of RGB which contains privacy-
related data and therefore, additional methods such as visual
privacy preservation techniques are required [19]. However,
more privacy can be preserved during data collection where
an inference model can be conducted on-the-chip and there is
no need to save or transfer any image to third-party sources
[18]. Therefore, LWIR and depth modalities are selected in
our research to train our proposed method for improving the
accuracy of pose estimation. Moreover, we use a generative
model to synthetically generate uncovered RGB images as they
are ideal for pose estimation.

We propose a deep learning-based IoMT network archi-
tecture for robust and accurate in-bed human pose estima-
tion. The proposed architecture is aimed at providing IoMT
solutions such as for remote in-bed pose monitoring for pa-
tients using contactless technology. These include monitoring
patients with sleep apnea and pressure ulcers which can be
extended for continuous monitoring of infants’ pose in the
neonatal intensive care unit for timely and effective treatments
[20], [15]. Our network consists of four phases: 1. Pre-
processing, where each modality is aligned, the region of
interest (ROI) is selected and the image is enhanced by the
histogram equalisation method. 2. Feature fusion of the pre-
processed modalities (LWIR and depth) by an autoencoder
and fusion module such that the modalities are fused without
any variational patterns (such as any different elevated regions
by depth modality and/or different heat patterns over blanket
for LWIR). 3. Synthetic image generation of uncovered
RGB image from fused modality by proposing and employing
a generative adversarial network (GAN)-based model. The
generator is based on the U-Net structure, and the initial image
is down-sampled for a residual block whose output is fused
with the penultimate transpose convolutional layer. We have
generated uncovered RGB image from fused modality because
pose estimation algorithms seem to work best with uncovered
RGB images. 4. Pose estimation by modified HRNet which
can preserve global spatial information and draw the pose
skeleton with much higher accuracy. The proposed method is
rigorously tested over SLP dataset against the SOTA methods,
where it outperforms on all considered evaluation parameters.

Our contribution:
1) We propose a feature fusion technique based on au-

toencoder architecture with dense convolutional blocks
and a proposed fusion module. It concatenates the deep
features from two modalities (LWIR and depth) and
produces a fused feature image.

2) We introduce a novel architecture for the generation
of synthetic image from one domain to another. Our
generator model includes a two-stage image genera-
tion module which preserves the global features and
increases the quality of the synthetic image.

3) We modify the architecture of HRNet to achieve higher
accuracy for pose estimation. A spatial pyramid pooling
layer along with an attention mechanism is added to
preserve spatial information and promote the reuse of
features.

4) We demonstrate the effectiveness of our proposed
method and how it increases the performance of in-bed
human pose estimation on SLP dataset with 109 adult
subjects in different environments (home and hospital)
covered under the different thicknesses of the sheet.

The remainder of the paper is structured as follows. In
Section II the methods including network architecture are
described. This section provides details on pre-processing
algorithms, feature fusion techniques, and synthetic image
generation. In Section III, experimental results are explained
including implementation details, SLP dataset, and evaluation
metrics. Finally, the paper is concluded in Section IV with a
discussion on further work.

II. METHODOLOGY

In this section, we describe pre-processing techniques ap-
plied to different modalities, then, feature fusion, generation of
syntactic images, and human pose estimation method are ex-
plained. The complete architecture of our proposed method is
represented in Fig 1. Each component of the proposed method
is discussed in detail in this section. More specifically, Section
II.A outlines the elementary architecture of the proposed
technique. In Section II.B, the pre-processing approach is
described. Section II.C introduces the feature fusion technique
whereas the method for generation of syntactic RGB images is
described in Section II.D. Finally, the modified pose estimation
algorithm is presented in Section II.E.

Fig. 1. Proposed architecture for in-bed human pose estimation.

A. Network Architecture

In this research, a multi-staged human pose estimation
architecture is designed. We have selected two modalities
(i.e., LWIR and depth) from the SLP dataset for in-bed
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pose estimation because these modalities are not only privacy
protecting and inexpensive but also it has been shown that they
perform significantly well under non-illuminated and occu-
lated environments. The images from both of these modalities
are pre-processed before fussing the features using a proposed
encoder-decoder network. Thereafter, the fused modality is
processed by the GAN model which has been customised
to generate RGB images of patients without the cover in a
similar pose as in the LWIR/depth modality. The generation
of uncovered synthetic images increases the accuracy of pose
estimation as uncovered and illuminated RGB images can be
trained well with pose estimation algorithms.

Fig. 2. The overview of pre-processing of modalities which includes three
stages: Alignment of modalities, Bed selection, and Image enhancement.

B. Pre-processing

In this section, pre-processing stages are outlined where we
have employed three distinct methods: 1. Modality alignment,
2. Bed selection, and 3. Image enhancement. Fig. 2 repre-
sents a visual demonstration of the pre-processing steps. The
LWIR and depth modalities possess dissimilar resolutions, as
120×160 and 424×512, respectively. Due to this dissimilarity,
fusing features from these modalities will be challenging.
Hence, the initial step involves aligning the images based on
a marker present in the SLP dataset. The SLP dataset consists
of four markers situated on the bed, each with a fixed height
of 10cm. These markers possess heat-emitting capabilities and
are characterized by a fixed weight and a distinct red coloration
on the top surface. These features help in the calibration of
the markers using all four modalities to obtain: RGB, LWIR,
PM, and depth. Subsequently, the images are calibrated by
referencing the markers on each modality. Following this cali-
bration process, a region of interest (IROI ) is calculated based
on the markers position. This selection not only improves
computational efficiency but also directs the subsequent pose
estimation methods to concentrate exclusively on the IROI .
Henceforth the modalities are resized to 128×256 pixels such
that effective training of deep learning can be achieved without
loss of any key features. Finally, the histogram-based image
enhancement method is employed to rectify the contrast and
brightness of the image to ensure that each modality can be
enhanced and luminated. The pre-processing phase seems to
be enhancing the results of feature fusion and thereafter in-bed
pose estimation.

C. Feature fusion

This section provides a comprehensive introduction to the
proposed fusion method based on deep learning. The input

LWIR and depth modalities are represented as ILWIR and
IDepth. The proposed architecture comprises of three key
components: 1. Encoder, 2. Fusion module and 3. Decoder.
Fig. 3 illustrates the architecture of the proposed network.

Fig. 3. A detailed framework of proposed deep learning-based fusion method.

The encoder block has two modality specific feature extraction
(MSFE) modules due to the variability of components in each
modality. MSFE allows the modalities to process indepen-
dently, thereby allowing the network to capture modality-
specific patterns and information more efficiently. It also
allows the network to focus on specific characteristics and
exploit their complementary information. Each MSFE module
consists of a convolutional layer and a dense convolutional
block for extraction of deep features of modalities. Generalised
features are extracted by the first convolutional layer (C1)
with a filter size of 3 × 3, thereafter a dense convolutional
block (where the input of each layer is the cascaded input
and output of the previous layer) with two convolutional
layers (C2 and C3) of 3 × 3 filter size is employed to
capture deep features. The dense connections in the block
facilitate the flow of information within the modality-specific
paths, allowing for iterative and enriched feature learning. This
iterative refinement helps to capture finer details and improve
the discriminative power of the features. Each convolutional
layer in the encoder has a filter size of 3×3 and a stride of 1.
This approach ensures the use of salient features in the fusion
module, and it also helps the deep features to be preserved in
the encoder.

The two feature maps received by the encoder are con-
catenated in the fusion module. Concatenation is a widely
used technique for feature fusion as it preserves individual
modality-specific information while enabling the network to
leverage the combined knowledge from both modalities. There
is n number of feature maps for each modality represented as,
n ∈ 1, 2, . . . , N , N = 48. ILWIR and IDepth are the two-input
modality for the encoder that are pre-processed and resized.
Next, the encoder produces feature maps of ϕn

LWIR and
ϕn
Depth, from pre-processed images of both modalities which

then pass through three convolutional layers of C1, C2 and
C3. ffused denotes the fused feature maps. The corresponding
point in the input and fused feature maps is (i, j). The
concatenation strategy is formulated by the following equation:

ffused(i, j) = ϕn
LWIR ⊕ ϕn

Depth (1)
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By concatenating the feature maps, the fusion module enables
the network to access information from both modalities si-
multaneously. The concatenated feature maps contain a joint
representation that incorporates information from both modal-
ities (LWIR and depth), allowing for the integration of the
complementary features and facilitating cross-modal interac-
tions. Thereafter, the fused feature maps are further processed
through convolutional layer (C4) and pooling operation to cap-
ture higher-level representations and refine the fused features.
The output of the pooling layer serves as the input to the
decoder, which is responsible for the reconstruction of fused
images. The decoder block consists of three convolutional
layers of filter size 3× 3 and stride 1. A simple yet efficient
model is used for the reconstruction of fused image.

A detailed model summary of the proposed architecture is
outlined in Table I. The encoder block has one convolutional
layer (C1) with a filter size of 3 × 3, whereas the dense
convolutional block has two convolutional layers, C2 and
C3, which are connected by cascading operation to catch
dense features. Rectified Linear unit (ReLu) is used as the
activation function because of its computational efficiency. The
fusion block has a convolutional layer followed by an average
pooling layer of filter size of 3 × 3. The decoder block has
three convolutional layers: C5, C6, and C7 which are used to
reconstruct the fused feature image. We have employed the
Programmatic Rectified Linear unit (PReLu) in the decoder
block as it has the functionality to learn parameters to control
the slope of the negative part of the activation function. By
assigning negative values to create different slopes, PReLU can
adaptively capture more complex and diverse representations.
The proposed model is trained using the SLP dataset with
LWIR and depth modalities. The model is trained for 300
epochs with a batch size of 16 and a learning rate of 1×10−5.
The encoder-decoder network is trained to yield enhanced
results for feature extraction and regeneration of fused image.

TABLE I
FEATURE FUSION SPECIFICATIONS FOR PROPOSED ARCHITECTURE

Block Layers Input Output Activation Filter Stride
Encoder C1 1 16 ReLu 3× 3 1

Dense Conv. 1
Dense C2 16 16 Leaky

ReLu
3× 3 1

conv C3 32 16 Leaky
ReLu

3× 3 1

Fusion C4 48 48 ReLu 1
Avg. pool 48 32 ReLu

Decoder C5 32 32 PReLu 3× 3 1
C6 32 16 PReLu 3× 3 1
C7 16 1 3× 3 1

D. Synthetic image generation

In this section, a privacy-preserving method of synthetic
image generation from the fused modality (LWIR + Depth) is
proposed. Our technique can generate RGB image of uncov-
ered human-on-bed from fused modalities. The synthetically
generated visible images do increase the accuracy of in-
bed human pose estimation as uncovered RGB images do

provide higher scores for pose estimation when compared
with other covered images from various modalities. Fig. 4
shows the pictorial representation of the proposed architecture.
We have explored the architecture of GAN proposed by [21]
and adopted by many researchers across the globe for many
different applications. Moreover, GAN has been used widely
for the generation of high-resolution images such as RGB.

Fig. 4. Network architecture of proposed GAN model.

Random noise vector z is used for the generation of
meaningful output image y, G : z → y. The output generated
by the generator (G) tries to be indistinguishable from the
original image, whereas a discriminator (D) is trained to
identify generated images and penalise the generator block
such that G can generate more realistic images. The task
of D is to effectively differentiate real or fake images. The
fused image is taken as input by the generator to reconstruct
the uncovered RGB image and the discriminator block is
calculated as the difference between the corresponding real
image and the reconstructed image.

The generator block is inspired by the architecture of UNet
[22] which included encoder and decoder blocks with skip
connections being established between corresponding layers.
These connections help to preserve and transfer low-level
features from the encoder to the decoder, facilitating the
generation of fine details in the output image. It also has
the residual layer (R1) which captures more complex and
abstract features thereby leading to improved performance for
image translation from one domain to another. In this type of
architecture, the input undergoes a sequence of down-sampling
layers until reaching a bottleneck layer, after which the process
is reversed. This design ensures that all information must pass
through every layer, including the bottleneck. However, the
image translation tasks have common low-level information
between input and output which would be advantageous to
directly transfer this shared information across the network.

Thus, adding a skip connection in an encoder-decoder
architecture is important. A residual block is added to the
generator architecture to capture the global features of the
fused modality. The input image is down-sampled by 2× such
that the global features like edge and texture of the in-bed
human are captured. This block contains (i) a convolutional
layer for extracting initial key features and encoding spatial
information, (ii) a series of residual layers for preserving low-
level details and learning residual information, and (iii) a
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transpose convolutional layer for up-sampling and adjusting
channel dimension. These residual blocks help in overcoming
the vanishing gradient problem and capture the deep features.
Thereafter, the result is concatenated with Conv.5 of the main
architecture such that the local and global features can be
fused. The generator architecture shows an efficient flow of
information with skin connections for feature retention and
parameter sharing which enables faster inference. The feed-
forward structure allows for fast processing of input data, thus
enabling faster pose estimation. Each residual layer consists
of a series of convolutional, batch normalisation, and ReLU
layers along with a 1 × 1 convolution layer used for the
transformation of feature maps. This architecture helps in
feature extraction and translates the preserved features to the
next layers.

The discriminator architecture is a sequence of convolu-
tional neural network with a fully connected layer at the end.
Such architecture provided spatial awareness and helped in
localized discrimination. It also reduces the computational
complexities and increases the robustness to changes in global
features thereby improving the training stability of the dis-
criminator block. These characteristics make it well-suited
for image translation tasks, where preserving local details
and maintaining realistic and coherent patches are crucial for
generating high-quality outputs. The model summary for both
the generator and discriminator block is tabulated in Table II,
where the number of the input channel (I/p), filter size, stride,
and activation are mentioned for each layer.

TABLE II
PROPOSED ARCHITECTURE SPECIFICATIONS FOR GAN MODEL

Layers I/p Filter Stride Activation
Generator

Conv.1 32 5× 5 1 ReLU
Conv.2 64 3× 3 2 ReLU
Conv.3 128 3× 3 2 ReLU

R1 128 3× 3 1 LeakyReLU
Conv.4 128 3× 3 2 LeakyReLU
Conv.5 64 3× 3 2 ReLU
Conv.6 3 5× 5 1 tanh

Residual Block
Conv.7 64 3× 3 2 ReLU

R2 128 3× 3 2 ReLU
R3 256 3× 3 2 ReLU
R4 128 3× 3 2 ReLU

Discriminator
Conv.8 32 3× 3 2 LeakyReLU
Conv.9 64 3× 3 2 LeakyReLU

Conv.10 128 3× 3 2 LeakyReLU
Conv.11 256 3× 3 2 LeakyReLU

For conditional GAN, the reconstructed synthetic image
(Igen) by the generator G(Ifused, z) is conditioned on input
Ifused and is compared against the corresponding conditioned
real image (IRGB) in the discriminator (D). The objective
function is for conditional GAN is shown in Equation (2):

LcGAN (G,D) = ΞIfused,IRGB
[logD(Ifused, IRGB)]+

ΞIfused,z[log(1−D(Ifused, G(IRGB , z)))]
(2)

The fundamental objective of the generator is to maximise
the discriminator loss and minimise the generator loss by
fooling the discriminator by generating high-resolution RGB

images. We have used the L2 loss function as it penalizes er-
rors more heavily due to squaring operations, thereby making
it more sensitive to outliers and minimising the loss between
Igen and IRGB . It tends to construct smoother results as it
penalizes large errors more and encourages predictions that are
closer to the mean. The objective function of the method and
the loss are represented in Equations (3) and (4) respectively:

G = argminGmaxDLGAN (G,D) + λLL2
(G) (3)

LL2
(G) = ΞIfused,IRGB

[(IRGB −G(Ifused, z))
2] (4)

GANs have the ability to translate images from one domain
to another by mapping input to output, but we have added
gaussian noise (z) along with Ifused in G, to avoid deter-
ministic outputs. [23] have acknowledged that adding noise
along with input to the generator provides better results. The
standard approach of training a GAN module is employed
for our model, which was proposed by [21] where one-step
gradient descent (SGD) on D and G are trained alternatively to
maximize log D (IRGB , G (Ifused, z)). Additionally, we have
also slowed the learning rate of D such that G can be trained
without vanishing its gradients. A learning rate of 0.0001 is
used along with SGD optimiser to train our model.

E. Pose estimation

We have adopted the architecture of HRNet [11] and have
modified it by adding a convolutional layer and a Spatial
Pyramidal Pooling Block (SPPB) prior to the original structure
of HRNet. Additionally, we have also added a dense block
as an attention mechanism between stage 2 and stage 3 of
HRNet. The modified architecture increases the accuracy of
in-bed human pose estimation from synthetically generated
image. The flowchart of the modified pose estimation network
is pictorially represented in Fig. 5.

Fig. 5. Network architecture of pose estimation module.

A convolutional layer of filter size 3×3 is added before the
SPPB such that it can further enhance the representation of
features before performing multi-scale pooling. The network
can learn more discriminative and abstract features, which
can then be pooled and processed at multiple scales by
the SPPB. This combination enhances the model’s ability to
capture both local and global contextual information, leading
to improved performance in pose estimation tasks. The Feature
Pyramid Networks (FPN) [24] inspires the use of the feature
pyramid, which is extensively employed by the architecture
of object detection modules. It leverages the intrinsic multi-
level features to provide rich semantic knowledge at all levels.
The pyramid structure follows a top-down architecture with
four levels, where convolution stride is employed for sampling
down the features. Each down-sampling step reduces the
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spatial resolutions (height and width) of the feature maps
by half while doubling the feature dimensions (number of
channels). Within this hierarchical structure, the primary high-
resolution branch of the network is directly fed with the top-
level feature map with the highest resolution. Meanwhile, the
subsequent levels (2nd, 3rd, and 4th) of feature maps are
merged with their respective peer by the process of element-
wise addition from the multi-resolution branches. This fusion
process combines the finer details from the higher-resolution
maps with the broader context captured by the lower-resolution
maps, resulting in a comprehensive representation at each level
of the feature pyramid. Across various semantic levels within
our network architecture, we have merged the feature maps
with corresponding peers by incorporating lateral connection
at the beginning of each parallel branch such that we can take
advantage of the feature pyramid’s output at each level. The
mathematical representation of the fusion of features at multi-
level is expressed by the following equation:

Fn = In +Hn−1 (5)

The symbol Fn represents the output of the fusion op-
eration, where the feature map from the kth level of the
feature pyramid, denoted as In, is element-wise added to its
corresponding counterpart Hn−1 from the (n− 1)

th parallel
branch in the network. The parameter n takes on values 2,
3, and 4. Notably, the 1st branch corresponds to the primary
branch in the architecture, and the top-level feature map of the
pyramid directly feeds into this branch.

After the multi-level feature fusion, Fn contains enriched
semantic information derived from the feature pyramid. This
fused feature map becomes the new input for the nth parallel
branch, starting the subsequent processing at that level. By
incorporating SPPB in front of the HRNet architecture, we
have harnessed its benefits to improve scale invariance, capture
spatial context, achieve computational efficiency, and preserve
spatial information. These advantages contribute to more ro-
bust and accurate pose estimation, particularly in challenging
scenarios. It helps the HRNet architecture gain a more compre-
hensive understanding of the spatial context surrounding each
body joint. This enhanced spatial context can aid in accurate
joint localization and pose estimation, especially in situations
where contextual information is critical, such as complex in-
bed human poses.

A dense block is added as an attention mechanism between
stage 2 and stage 3 of the HRNet architecture, it potentially
increases the accuracy of in-bed human pose estimation.
The Dense Block (DB), originally introduced in the Dense
Net architecture [25], incorporates dense connections between
layers, allowing each layer to receive feature maps from all
preceding layers. This design promotes feature reuse and facil-
itates information flow throughout the network. DB consists of
three convolutional layers (of filter size 3× 3), each followed
by a concatenation operation to combine the feature maps from
all preceding layers. Batch normalization and ReLU as an
activation function are applied to each layer. This promotes
the extraction of meaningful features and helps in attending to
relevant information for pose estimation.

III. RESULTS AND DISCUSSIONS

In this section, we will discuss the implementation details,
the dataset used for training and testing our model, and
the performance metrics to evaluate the performance of our
method. Moreover, the proposed pipeline is compared with
SOTA to evaluate the effectiveness of the model.

A. Implementation Details

Our network architecture is trained on NVIDIA V100 GPU
and TensorFlow along with Python is used to design the
network. The feature fusion network is trained for 100 epochs
while the GAN and pose estimation network is trained for 200
epochs. The convolutional weights are initialized to a normal
distribution with a standard deviation of 0.05 and a mean of
0. Adam optimization algorithm with β1= 0.5 and β1= 0.1 is
used with the constant learning rate as 1×10−5 by the feature
fusion model. Additionally, for the GAN model, we have also
slowed the learning rate of D such that G can be trained
without vanishing its gradients. A learning rate of 0.0001 is
used along with SGD optimiser to train our model. The pose
estimation architecture is then trained by the Adam optimizer
with an initial learning rate of 0.0002 and a decay rate of 0.01
for the next 100 epochs.

B. SLP Dataset

The proposed pipeline is trained and tested on publicly
available SLP dataset [15]. The dataset has in-bed human pose
images taken from four different modalities (RGB, LWIR,
Depth, PM) under three cover conditions (no cover, ∼1mm
thin cover, ∼3mm thick cover) for 109 participants at home
and hospital environmental conditions (Dana Lab and Sim
Lab respectively). Additionally, the dataset records 45 different
natural sleeping poses for all 109 participants under 3 main
sleeping posture categories: right side, supine, and left side.
The images are captured in difficult luminance and occultation
conditions by all the modalities; thus, it helps the deep learning
model train under natural sleeping conditions (occulted by
the cover and under low luminance). Moreover, to increase
the variability of the dataset, different colour covers are used
for home and hospital settings. Samples of dataset under
different cover conditions by different modalities are shown in
Fig. 6. For visual representation the image for PM in Figure
Fig. 6 is changed to a blue channel such that the image is
visible. The image resolution for each modality is different,
RGB image is of 576 × 1024, LWIR is 120 × 160, Depth is
424 × 512 and the PM is 84 × 192. This variance in image
resolution also affects the training process so we have pre-
processed the modalities before using it in our deep network
architecture. The dataset also contains the annotated ground
truth (x, y) coordinates for fourteen body joints. Table III
tabulates the train-test split of data under different environment
settings. As shown in the Table, for the home environment,
there are 102 subjects considering 45 frames and 3 different
cover conditions, thereby, a total of 102 × 45 × 3 = 13770
samples. Out of these samples, 12150 samples have been
used for training and 1620 samples have been used for the
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Fig. 6. Qualitative review of SLP dataset for patient id: 73 and pose id: 10.

testing. The total number of testing samples considering the
hospital environment is 2565 samples. It is worth noting that
these samples correspond to the number of samples for each
modality, i.e., one modality.

TABLE III
OVERVIEW OF SLP DATASET

Environment Subject(train+test) Train Test
Home 102(90+12) 12150 1620

Hospital 7(0+7) 0 945
total 109 12150 2565

We have used LWIR and depth modalities for training and
testing our proposed pipeline as they are inexpensive unlike the
PM modality and protect the privacy of the sleeping patients,
unlike RGB modality. The pose estimation algorithm on the
selected modalities performs better than the other two as it
is not affected by occultation or luminance as the other two
modalities. Moreover, it is also noticed that PM modality
results in a ghost effect and fails to locate heels and arms
thereby making it difficult for pose estimation under certain
sleeping postures.

C. Evaluation Metrics

We evaluated the performance of synthetic image generation
by the GAN network on three evaluation metrics: Frechet
Inception Distance (FID) [26], Peak Signal-to-Noise Ratio
(PSNR) [27] and Structural similarity Metric (SSIM) [28].

FID measures the distance between generated and real
image at the feature level, it is mathematically represented
as:

FID = ∥Mreal −Mgenerated∥2+

Tr(Creal+Cgenerated − 2
√
(Creal × Cgenerated))

(6)

Where Mreal, Mgenerated are the mean of feature vectors of
real and generated image respectively. The covariance of the

real and generated image are represented as Creal, Cgenerated,
and Tr is the trace of the matrix.

PSNR measures the peak error between real and generated
image. It calculates the difference between images based on
pixel values. A higher value of PSNR shows a low perpetual
difference between images. The mathematical representation
of PSNR is:

PSNR = 20× log10Imax − 10× log10MSE (7)

Where, Imax is the maximum possible pixel value and MSE is
the mean square error between the real and generated image.
The similarity between the real and generated image in terms
of brightness, contrast, and structure is measured by SSIM. It
is designed to mimic human perception on how we visualise
images rather than pixel-wise comparison. It is represented as:

SSIM(i, j) = L(i, j)× C(i, j)× s(i, j) (8)

where L(i, j), C(i, j), s(i, j) are the similarity components for
Luminance, Contrast, and Structure, respectively. The value
of SSIM lies between 0 to 1 where 1 is associated with
the generated image that exactly looks like the corresponding
real image. We have used a percentage of correct keypoint at
normalised distance of 0.5 (PCKh@0.5 metric) to assess the
performance of pose estimation framework. It is the measure
of distance between ground truth and predicted joint at less
than 50% of head bone length. The distance between the points
representing thorax and head is used to calculate head bone
length. The effectiveness of the proposed pipeline for pose
estimation is validated on both the environment (home and
hospital) using these evaluation metrics.

D. Experimental Results

The performance of in-bed pose estimation for each modal-
ity under the home setting is reported in Fig. 7. It shows
that the fused modality, i.e., LWIR+depth performs better than
single modalities for pose estimation for PCKh metric at 0.5. It

Fig. 7. PCKh performance of pose estimation of proposed architecture on
depth, PM, LWIR, and fused (LWIR+depth) modalities under home setting.

is clear that the depth modality has a more stable performance
when compared with LWIR for all three cover conditions
(having PCKh@0.5 >= 95% ). The PM modality shows the
most stable performance for all three cover conditions although
its PCKh@0.5 lies the lowest among all three modalities as
PM is unable to draw joints due to missing pressure points
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at arms and heels. The results show that the performance
of pose estimation is dropped under thick cover (cover 2)
by LWIR modality while the PM modality is not affected
much by the type of cover condition and the depth modality
shows a minor difference in performance. Fusion of LWIR
and depth modalities shows enhanced results for in-bed human
pose estimation.

A comparison of the performance of in-bed pose estimation
between the proposed method and SOTA under different
environments (home or hospital setting) and different cover
conditions is tabulated in Table IV. The experimental results
show that the proposed method outperforms the SOTA al-
gorithms for pose estimation under all the different cover
conditions and for both the environmental conditions (home
and hospital). The feature maps are merged from different
scales at corresponding levels in [11], which makes it more
effective for visually difficult poses in the RGB domain.
By combining the high-scale feature maps, the accuracy for
localization of joints is decreased but does not predict false
positives. [10] uses a CNN-based self-attention network for
2D and 3D estimation pose which makes it effective for the
detection of pose from RGB images.

TABLE IV
PERFORMANCE EVALUATION OF PROPOSED METHOD AND SOTA

(PERCENTAGE AT PCKH@0.5) FOR DIFFERENT ENVIRONMENTAL AND
COVER CONDITIONS

Dataset Condition Proposed method [11] [10]
No cover 98.9 98.1 97.9

DANA LABS cover1 97.9 97.0 95.2

(Home Setting) cover2 96.6 95.9 92.5
average 97.8 97.0 95.2

No cover 98.9 98.6 98.4

SIM LABS cover1 97.7 97.1 97.6

(Hospital Setting) cover2 88.4 85.6 86.9
average 95.0 93.8 94.3

Fig. 8. Qualitative analysis of the proposed pipeline. (a) Input depth modality
(b) Input LWIR modality (c) Pre-processed depth image (d) Pre-processed
LWIR image (e) Feature fusion of both the modalities (f) Generation of
uncovered RGB image (g) Pose estimation on synthetically generated image.

Table V shows the quantitative study of different methods in
the proposed pipeline for in-bed human pose estimation using
the two-privacy protecting and inexpensive modalities (LWIR
and depth). We have also illustrated how the performance
of [11] increases when our pipeline is employed along with
the SOTA method for all the cover conditions (c0=no cover,

c1=thin cover, c2=thick cover). The results show the effec-
tiveness of the proposed architecture in improving the PCKh
score @ 0.5. Table V clearly shows how the accuracy of pose
estimation increases for all the cover conditions with the im-
plementation of each stage by both methods (Proposed method
and [11]). Initially, the pose estimation (PE) technique is
employed on LWIR modality by both methods, and thereafter
pre-processing (PP) on modality is applied, which increases
the performance to a certain extent. The performance of pose
estimation is spiked when the feature fusion (FF) technique
is employed to the pre-processed LWIR and depth modalities.
Henceforth the generation of uncovered in-bed human image
by GAN further increases the performance. The performance
of c2 is increased significantly as the GAN module helps the
covered image of fused modality to generate a corresponding
uncovered image thereby increasing the pose estimation. The
pose estimation score of proposed networks for all the stages is
better than the SOTA method as adding SPPB along with dense
block helps the HRNet learn more spatial features thereby
increasing its pose estimation capacity.

TABLE V
PERFORMANCE EVALUATION OF DIFFERENT STAGES IN PROPOSED

METHOD AND SOTA (PERCENTAGE AT PCKH@0.5) UNDER DIFFERENT
COVER CONDITIONS

Method Proposed method [11]
Stages c0 c1 c2 avg c0 c1 c2 avg

PE (on LWIR) 95.4 93.3 91.8 93.5 95.2 92.6 90.9 92.9
PE+PP (on LWIR) 96.1 93.8 92.3 94.1 95.7 93.5 91.9 93.7

PE+PP+FF 97.8 96.7 95.5 96.7 97.1 95.4 94.9 95.8
PE+PP+FF+GAN 98.9 97.9 96.6 97.8 98.1 97.0 95.9 97.0

We have also evaluated the performance of the proposed
GAN module for the generation of synthetic image from fused
modality. The GAN model is evaluated on three parameters:
FID, PSNR, and SSIM. Where the smaller value of FID is
better, and the higher value of PSNR and SSIM are better.
Detailed comparison of the proposed GAN model with SOTA
for generation of uncovered RGB images of in-bed human
is tabulated in Table VI. It shows that our model achieves
better results on most parameters. Our model can not only
extract the deep features from the image but also retain
semantic information. [29] explored conditional adversarial
architecture for image translation from one domain and other.
The learning not only involves mapping of features from the
corresponding input and output images but also employing the
loss function to refine and train this mapping. [30] employed
conditional GANs for generating high-resolution image from
semantic label maps. Synthetic images are generated by U-Net
architecture by [22].

TABLE VI
PERFORMANCE EVALUATION OF PROPOSED GAN MODEL WITH SOTA

Model FID PSNR SSIM
[29] 231.27 8.01 0.90
[30] 217.79 9.93 0.91
[22] 246.14 7.34 0.86

Proposed method 206.51 8.68 0.94

We have compared the proposed pose estimation architec-
ture with SOTA models such as [31] [11] [10] [32] [33] [34].



JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS (JBHI), VOL. , NO. , XXX 2023 9

TABLE VII
EVALUATION OF PCKH@0.5 FOR POSE ESTIMATION UNDER DIFFERENT COVER CONDITIONS WITH DIFFERENT PRIVACY-PROTECTING MODALITIES.

Method LWIR+PM PM+depth depth+LWRI
c0 c1 c2 avg c0 c1 c2 avg c0 c1 c2 avg

proposed method 95.7 93.8 91.4 93.6 91.3 89.1 83.2 87.9 98.9 97.9 96.6 97.8
[31] 95.8 93.5 92.6 93.9 90.1 90.2 90.2 90.2 97.6 96.1 95.8 96.5
[11] 95.2 93.1 91.9 93.4 84.4 84.3 84.2 84.3 97.7 95.8 95.6 96.4
[10] 94.2 92 91.4 92.5 86.5 87.1 86.8 86.8 96.9 94.5 94.6 95.3
[32] 90.4 88.7 87.2 88.8 88.5 88.6 88.4 88.5 95.8 93.3 93.4 94.2
[33] 96.0 93.6 93.0 94.2 90.5 90.7 90.7 90.6 97.9 96.1 95.9 96.6
[34] 91.6 89.3 88.8 89.9 87.9 88.2 88.2 88.1 96.8 93.3 93.6 94.6

We have followed the proposed pipeline for all the models,
where two privacy-protecting modalities are fused using the
fusion algorithm and thereafter an uncovered RGB image is
generated by the GAN architecture. The performance of the
proposed method and SOTA models for estimation of in-bed
human pose of the generated image is tabulated in Table
VII. PCKh metric at 0.5 is used to evaluate all the SOTA
models for different fused modalities and under different
cover conditions (c0=no cover, c1=thin cover, c2=thick cover).
The experimental results show that the fusion of depth and
LWIR outperforms the other two pairs of fused modalities
(LWIR+PM) and (PM+depth) for all the cover conditions
by all the SOTA models and the proposed pose estimation
method. This experiment clearly shows the supremacy of
the fused pair (depth+LWIR) over the other two pairs. The
experiment not only marks the highest score for the said
pair of modalities but also achieves the highest score of
PCKh@0.5 by the proposed pose estimation method which
is a modified version of HRNet. Both depth and LWIR are
not only privacy-protecting modalities but also inexpensive
and easily accessible as compared to pressure maps which fail
to achieve significant scores even after fusion with either of
the modalities. The performance of pose estimation under no
cover condition is inevitably higher, and the score decreases as
the thickness of the cover increases. Features of neighboring
scales are merged by the network architecture in [31] and
[33]. A couple stacked UNet structure is used by [32], where
the features are globally reused thereby making the network
lightweight. [34] uses a CNN based multi-context attention
mechanism for pose estimation.

TABLE VIII
COMPARISON OF PERFORMANCE FOR POSE ESTIMATION AT PCKH@0.5

BY PROPOSED METHOD AND RECENT FUSION BASED MODELS

Method Year PCKh@0.5
Proposed method 2023 97.8

[35] 2023 96
[36] 2022 95.8
[37] 2022 76.13

The proposed method seems to outperform on PCKh metric
@ 0.5 when compared with recently published fusion-based
models which are employed for in-bed pose estimation on
the SLP dataset. Table VIII compares the proposed method
with SOTA fusion-based pose estimation algorithms. [35]
employs feature fusion by deep learning-based end-to-end
fully trainable approach. Feature fusion-based approach is
used by [36], where features of missing visible images are

reconstructed. [37] have proposed unimodal pose estimation
techniques. The experimental results show that the fusion of
modalities provided better results for pose estimation.

Table IX shows the comparison of the proposed pipeline
with [11] and [10] to compare the standard deviation and mean
difference of predicted joints from the ground truth results.
The low value for standard deviation and mean shows the
supremacy of the model. The proposed method shows better
results for both standard deviation and mean, this is because of
the addition of feature fusion technique into the pipeline along
with the synthetic image generation model which enhances the
performance of pose estimation when compared with SOTA.
Qualitative results for the proposed pipeline are shown in Fig.
8 where two modalities are considered as input and thereafter,
they are pre-processed individually, and their features are
fused. Henceforth, the GAN-based model generates uncovered
RGB images and the pose is detected.

TABLE IX
COMPARISON OF STANDARD DEVIATION AND MEAN FOR POSE

ESTIMATION BY PROPOSED METHOD AND SOTA

Model STD Mean
Proposed method 0.086 0.142

[11] 0.094 0.149
[10] 0.099 0.157

IV. CONCLUSION

In this research, a new IoMT approach has been developed
for in-bed pose estimation exploiting deep learning techniques.
The proposed model has been tested using a public dataset,
SLP, for performance evaluation, and considerable improve-
ments have been observed compared to the recent methods.
The proposed method uses an AI-based generative model
to recover images under thick cover situations. The deep
learning-based pose estimation method has a direct impact on
sleep applications and the potential to be integrated within
smart healthcare systems using low-cost devices to monitor
patients in the home and hospital environments. Moreover,
the developed deep learning-based pose estimation approach
can be exploited in other studies for real-time and full body
pose estimation which has a big impact on smart healthcare
as well as continuous monitoring of patients at home/hospital
environments. Large-scale data collection at home/hospital
environment can be done in future studies targeted at various
healthcare applications such as for monitoring patients with
pressure ulcers, sleep apnea disorder, acid reflux, elderly,
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neonatal, or pregnant women. The proposed architecture can
also be used as a base to infer contact pressure from various
modalities to eliminate the necessity of using pressure maps
which will be another future direction of this research where
augmented data using GAN can help improve the system
performance.
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