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Abstract

Monitoring mental fatigue is a crucial and important step for prevention of fatal

accidents. This may be achieved by understanding and analysis of brain electrical

potentials. Electroencephalography (EEG) is the record of electrical activity of

the brain and gives the possibility of studying brain functionality with a high

temporal resolution. EEG has been used as an important tool by researchers for

detection of fatigue state. However, their proposed methods have been limited

to classical statistical solutions and the results given by different researchers are

somehow conflicting. Therefore, there is a need for modification of the existing

methods for reliable analysis of mental fatigue and detection of fatigue state.

In addition to the raw EEG, event related potentials (ERPs), which are direct

measures of brain responses to the specified stimuli, have been used in mental

fatigue analysis since the attention related ERPs have shown to be effective for

detection of fatigue state. In this study we aim to extend and further develop

the existing signal processing methods for EEG- and ERP-based mental fatigue

analysis.

First, a new approach is proposed for measuring synchronization of EEG os-

cillations in different frequency bands across brain regions. The approach is used

to find the relevant and effective features for detection of the fatigue state. It uses

adaptive methods such as empirical mode decomposition (EMD) and adaptive

line enhancer (ALE) for extracting and de-noising the EEG oscillations. Then,

Hilbert transform (HT) is used for computing the linear and non-linear synchro-

nization measures. A new method based on particle filtering (PF) is proposed

for direct estimation of instantaneous phase of an oscillation. This method can

be developed more in future studies for phase synchronization analysis of the

EEG oscillations before and during the fatigue state.

ERP subcomponents are estimated using PF. Based on the proposed method,

ERP subcomponents are separated in temporal domain across different trials and

their inter-trial variability is tracked using a coupled PF. The method is applied

to mental fatigue data to show the potential use of the method in ERP subcom-

ponent estimation for detection of fatigue state. Then, a new spatio-temporal
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filtering is designed for estimation of the correlated ERP subcomponents. The

method is robust against both temporal and spatial correlations of the ERP sub-

components. It is compared to the existing methods in different scenarios and

its superiority is confirmed by using simulated signals. It is also applied to real

data to show its potential use in ERP subcomponent estimation.

Finally, an auditory based paradigm is implemented to evaluate the effective-

ness of the designed mental fatigue detection system. By applying the proposed

methods for estimation of single trial P300 subcomponents and EEG phase syn-

chronization, it is demonstrated that the proposed auditory paradigm can be

effectively used in a mental fatigue detection system.
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ã
(n)i

k nth particle for amplitude of P3b in kth trial of ith RBPF

bk(i) Latency of ith subcomponent at trial k

bik Latency of P3a in kth trial of ith RBPF

b
(n)i

k nth particle for latency of P3a in kth trial of ith RBPF

bk kth principal component

B Number of frequency bins

Bk−1(x
1
k−1) State transition for linear state variable of RBPF

b̃ik Latency of P3b in kth trial of ith RBPF

b̃
(n)i

k nth particle for latency of P3b in kth trial of ith RBPF

c Normalizing constant for Gamma waveform

ci(t) Analytic version of ith IMF at time t

Ck(x
1
k) Observation transition for linear state variable of RBPF

di(t) ith IMF at time t

dt(i) ith IMF at time t

diff(.) Differences between adjacent elements

e(t) Adaptation error of ALE at time t

xvii



exp(.) Exponential function

E{.} Expected value

f Observation transition function of PF

f State transition function of RBPF

fk General non-linear function

freq
(n)
t Instantaneous frequency of nth particle at time (trial) t

Fk State transition matrix in KF

f̃ State transition function of RBPF

G Observation transition function of RBPF

G̃ Observation transition function of RBPF

G′ Non-linear function

hk General non-linear function

hi(k, t) Hilbert transform of ith IMF at time t and kth frequency bin

Hk Observation transition matrix in KF

Hd[.] Discrete Hilbert transform

J
√
−1

k Shape parameter for Gamma waveform

kmax Number of trials

Kk Kalman gain

log(.) Logarithm function

M Number of IMFs

Ns Number of particles

nk−1 State noise of KF and PF

N (m,P) Gaussian distribution with mean m and covariance matrix P

N (x;m,P) Gaussian distribution with mean m and covariance matrix P evaluated at x

p Number of ERP subcomponents

Pk Covariance matrix of linear state vector variable of RBPF at trial k

p(.) Probability density function

p(.|.) Conditional probability density function

Psignal Power of signal

Pnoise Power of noise

q(.) Importance density function



Q
w(ρi)
k−1 Covariance matrix of state noise of non-linear state variable of ith RBPF

Q
w(ai)
k−1 Covariance matrix of state noise of linear state variable of ith RBPF

Qw
t−1 Covariance matrix of state noise of RBPF

Qv
t Covariance matrix of measurement noise of RBPF

Qn
k−1 Covariance matrix of the state noise of KF

Qv
k Covariance matrix of the measurement noise of KF and RBPF

Qw
k−1 Covariance matrix of state noise for linear state variable of RBPF

r1 Temporal reference signal for ERP subcomponent

r2 Temporal reference signal for ERP subcomponent

Real(.) Real part of a complex variable

si
k Width of P3a in kth trial of ith RBPF

s
(n)i

k nth particle for width of P3a in kth trial of ith RBPF

sk(i) Width of ith subcomponent at trial k

s̃i
k Width of P3b in kth trial of ith RBPF

s̃
(n)i

k nth particle for width of P3b in kth trial of ith RBPF

tmax Number of time points (trials)

Ts Sampling period

u(t− ∆) input vector of ALE at time t

unwrap(.) Phase unwrapping

vk Measurement noise of KF, PF and RBPF

vt Measurement noise of RBPF

Var Variance

w(t) Coefficient vector of ALE at time t

w
(n)i

k Weight of nth particle of ith RBPF at trial k

w
(n)
t Weight of nth particle of RBPF at at time (trial) t

w
(i)
k Weight of ith particle at trial k

w
ρi
k−1 State noise of non-linear state variable of ith RBPF

wa
k−1 State noise of linear state variable of ith RBPF

w2
k−1 State noise for linear state variable of RBPF

wt−1 State noise of RBPF

x(t) Signal (time series) value at time t

x1
k Non-linear state of RBPF at trial k

x2
k Linear state of RBPF at trial k

xk State of KF, PF and RBPF at trial k



xi
k ith particle at trial k

X Mixture matrix

zk Measurment at trial k

(.)T Transpose operation

δ(.) Dirac delta function

µ Step size in ALE

‖.‖2 Frobenious norm

θi(t) Instantaneous phase of ith IMF at time t

θt(i) Instantaneous phase of ith IMF at time t

χi,j(k) Cross spectrum of the ith and jth IMFs at kth frequency bin

ψi(k) Marginal power spectra of ith IMF at kth frequency bin

ζij(k) Coherence of ith and jth IMFs at kth frequency bin

γij Phase synchronization of ith and jth IMFs
∂(.)
∂wT Gradient with respect to wT

θ
(n)
t Instantaneous phase of nth particle at time (trial) t

ρ1
t (i) Non-linear state of RBPF for ith IMF at time (trial) t

ρ2
t (i) Linear state of RBPF for ith IMF at time (trial) t

µk Mean of linear state vector variable of RBPF at trial k

ρt State of RBPF at time (trial) t

ρ
1
t Non-linear state of RBPF at time (trial) t

ρ
2
t Linear state of RBPF at time (trial) t

ρt(i) State of RBPF for ith IMF at time (trial) t

ρ
i
k Non-linear state of ith RBPF at trial k

ρ
(n)i

k nth particle of ith RBPF at trial k

θ Scale parameter for Gamma waveform

θestimate(t) Estimated phase at time t

θactual(t) Actual phase at time t

∆ Prediction depth of ALE

π Ratio of any circle’s circumference to its diameter (3.14159)

ωi(t) Instantaneous frequency of ith IMF at time t



Chapter 1

Introduction

Mental Fatigue refers to a state of the brain that is accompanied by reduced

mental performance. It has been a major cause for many accidents especially

in transportation (among drivers) and the aviation area such as military avia-

tion. Therefore, detection of fatigue state of a human operator is necessary for

prevention of disastrous accidents. Invention of electroencephalography (EEG)

for recording brain electrical activity has made it possible to have a deep and

comprehensive understanding of brain functionality. EEG is used as a technique

for analysing physiological based changes of the brain in the fatigue state [1].

However, evaluating EEG signal for mental fatigue analysis has been limited to

the classical signal processing methods. The development of signal processing

methods for a better detection of fatigue state from EEG signals is therefore

necessary. One research direction in this thesis is to extend and further develop

the existing signal processing methods for mental fatigue analysis using the EEG

signal.

There is a subgroup of electric signals from the brain using the EEG sys-

tems called event related potentials (ERPs). ERPs are responses of the brain to

specifically designed stimuli. Extracting and evaluating the ERPs lead to under-

standing of various brain functions. For mental fatigue analysis, different ERP

components and subcomponents are evaluated before and during the fatigue

state. It is reported that attention related ERPs can be helpful for identification

of the fatigue state [1]. Traditionally, ERPs are averaged over a number of trials

because of their low signal to noise ratio (SNR). However averaging ERPs over

a number of trials leads to the loss of information related to inter-trial variabil-

ity of ERPs. Inter-trial variability of ERPs can provide useful information for

detecting the fatigue state. Also, in the case of having correlated ERP subcom-

ponents in temporal or spatial domain the classical methods such as principal

component analysis (PCA), which is used for separation of correlated ERP sub-

components, fail. Therefore, another direction in this thesis is provision of new

1
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methods for effective extraction of ERPs which exploit the inter-trial variability

of ERPs and overcome the problem of temporal/spatial correlation between the

ERP subcomponents. Then, the estimated ERPs can be used for detection of

fatigue state.

1.1 Aim and Objectives

In this thesis we aim to develop signal processing methods which are helpful for

better estimation of ERPs and EEG phase synchronization. The new insights

provided by the proposed methods for estimation of ERPs and EEG phase syn-

chronization are new effective basis for mental fatigue analysis and detecting the

fatigue state. Therefore, the main objective of this thesis has been on proposing

new methods to be used for reliable detection of the fatigue state. This thesis

represents significant contribution in the following areas:

• Estimation of EEG phase synchronization using combination of empiri-

cal mode decomposition (EMD) and adaptive line enhancer (ALE) with

application to mental fatigue for extracting the relevant features.

• Proposing a new method for phase tracking of the oscillatory signals based

on particle filtering (PF).

• Separation and tracking of P300 subcomponents overlapped in temporal

domain using a new formulation of PF.

• Proposing a new spatio-temporal filtering method for estimation of corre-

lated ERP subcomponents.

1.2 Thesis Outline

The layout of the thesis is as follows. In Chapter 2, the EEG recording procedure

is briefly described. Then, the EEG advantages and disadvantages in comparison

with other data acquisition modalities for recording brain activities are provided.

Some EEG specifications such as EEG rhythmic activities are also provided in

Chapter 2. Finally ERPs, particularly P300, are explained.

In Chapter 3, first, fatigue and its research motivation are described. Then,

two directions based on EEG and ERP for mental fatigue analysis including the

existing and newly proposed approaches are explained. This chapter ends with

description of the fundamentals of PF and Kalman filtering (KF) which are then

used in the next two chapters for two different purposes.
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In Chapter 4, a new approach for EEG phase synchronization is proposed.

This approach combines EMD and ALE for extracting and denoising EEG rhyth-

mic activity and then computes the linear and non-linear synchronization mea-

sures. As an application the approach is applied to mental fatigue data in order

to find and extract the effective features which can be employed for full mental

fatigue analysis in future studies. In addition, a new phase tracking method is

proposed at the end of this chapter. The new method can be used for tracking

the instantaneous phase of an EEG oscillation. The method should be refined

more and exploited for measuring synchronization of different EEG oscillations

for mental fatigue analysis in future studies.

In Chapter 5 a new temporal method for separation and tracking the vari-

ability of P300 subcomponents across different trials based on coupled particle

filtering is proposed. The method imposes physiological based constraints on the

PF for a more reliable estimation. Using the simulated signals, the performance

of the method is tested in different situations. The method is then applied to a

sample mental fatigue data to show its potential use for mental fatigue analysis

where the effects of each P300 subcomponent can be analysed separately in the

fatigue state.

In Chapter 6, a new spatio-temporal filtering method for ERP subcompo-

nent estimation is proposed. The proposed method is based on deflating one of

the correlated subcomponents in spatial domain while extracting another sub-

component in the temporal domain. Considering the mathematical framework

of the method and also based on the simulation results, it is shown that the

method is robust against both temporal and spatial correlations between the

ERP subcomponents. The performance of the method is compared with those

of different methods such as spatial PCA and temporal PCA in different sit-

uations using simulated data and its superiority is demonstrated. Finally, the

method is applied to a real data sample to show its potential use in ERP sub-

component estimation. The method can be used in different applications such

as differentiating schizophrenic patients and healthy subjects or determination

of fatigue state in mental fatigue analysis.

In Chapter 7 an auditory based paradigm is used and implemented when the

EEG is recorded before and during fatigue state. Then, the proposed methods

in Chapters 4 and 6 are used for estimation of single trial P300 subcomponents

and EEG phase synchronization before and during fatigue state. The results

demonstrate the potential use of the extracted features obtained in the auditory

based paradigm for detection of mental fatigue state.



Chapter 2

Overview of EEG and ERP

In this chapter, first, EEG along with its recording procedure and specifications

are explained. Then, ERPs particularly one of the main ERP components,

namely P300, are briefly described.

2.1 Electroencephalography

EEG is the recorded electrical activity of the brain over the scalp which is pro-

duced by the firing of neurons in the brain. EEG has been found to be useful in

the diagnosis of epilepsy, coma, encephalopathies, brain death and monitoring

the depth of anaesthesia [2]. In addition to the conventional and clinical use of

EEG, it is used for many other purposes such as brain-computer interface (BCI)

which aims at improving the life style of disabled people.

2.1.1 EEG Recording

In conventional recording of EEG from scalp, the electrodes are placed on the

scalp with a conductive gel or paste. In most systems each electrode is attached

to an individual wire. Usually in most clinical and research applications, the

international 10-20 system is used for specifying electrode locations and names.

The electrode locations of a 75-electrode EEG recording system using the ex-

tended 10-20 electrode positioning and their labels are illustrated in Fig. 2.1.

The recorded EEG signal is filtered in the preprocessing stage to remove

the noise and other artefacts. Normally, the EEG is highpass filtered with a

cutoff frequency between 0.5-1 Hz and is lowpass filtered with a cutoff frequency

between 35-70 Hz. The highpass filter is useful for filtering out the slow artefacts

like electrogalvanic signals and movement artefact [2] while lowpass filter is useful

for filtering out the high-frequency artefact like electromyographic interferences

[2, 3].

4
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Figure 2.1: 75-pin electrode positions based on extended 10-20 system [http://www-
psych.nmsu.edu/ jkroger/lab/principles.html].

Sometimes it is necessary to place the electrodes near the surface of the brain

as it is typically needed for epilepsy surgery. These electrodes are referred to as

electrocorticography (ECoG), intracranial EEG (I-EEG) or subdural EEG (SD-

EEG) electrodes [2]. The ECoG signal is processed in the same way as the scalp

EEG. Since the subdural signal is composed of predominance of higher frequency

components, the ECoG is usually recorded at higher sampling rates than scalp

EEG to meet the Nyquist criterion. However since many of the artefacts which

affect scalp EEG do not have impact on ECoG, its filtering in the preprocessing

stage is not required. Most of the times an additional notch filtering is applied

in order to remove the artefacts which are generated by electrical power lines

(60 Hz in the United States and 50 Hz in many other countries including United

Kingdom).

One of the most common types of artefact is eye blink. EEG signal is usually

contaminated with eye blink artefact. For removal of the eye blink artefact,

conventionally independent component analysis (ICA) [4] is applied to the EEG

signal. Then, one of the resulted components which corresponds to the eye blink

is set to zero and all the components are projected back to the electrode space.

In this way a new set of EEG signals are generated which is free of eye blink

artefact.
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Electric potentials are measured with respect to a reference which is an ar-

bitrary chosen zero level. There are different choices for the reference which

depend on the recording purpose. In referential montage, the recorded potential

at each channel is the difference between the potential at that channel and a

specified reference electrode. There is not a unique and standard location for

the reference, however the reference should be in a different position than the

recording electrodes. Typically, the midline positions are used for reference since

they do not amplify the signal in one hemisphere of the head versus the other

hemisphere. There is another common reference called linked ears. This ref-

erence is a physical or mathematical average of the channels attached to both

earlobes or mastoids [2].

2.1.2 EEG versus fMRI, PET and MEG

EEG as a non-invasive, convenient and inexpensive tool which is used for analysing

brain activity. The main advantage of EEG is its high temporal resolution. How-

ever one limitation of EEG is its poor spatial resolution. Other methods such

as positron emission tomography (PET) [5] and functional magnetic resonance

imaging (fMRI) [6] have better spatial resolution while their temporal resolution

is low. The difference between EEG and these methods (PET and fMRI) is that

EEG directly measures the brain activity while fMRI records the changes in

blood flow and PET measures the changes in metabolic activity, both of which

are indirect markers of the brain activity. EEG can be recorded simultaneously

with the fMRI. In this case a high temporal resolution data is recorded at the

same time with a high spatial resolution data. However there are some diffi-

culties in such a multi-modal recording. One difficulty is that the data derived

from each of the tools occur at different times, therefore they do not necessarily

relate to the same brain activity.

Magnetoencephalography (MEG) is an imaging technique which is used to

measure the magnetic fields produced by the electrical activity in the brain. The

MEG is recorded using an extremely sensitive device such as super conducting

interference devices (SQUIDs) [7]. Magnetic fields are less distorted by the re-

sistivity of the skull and scalp in comparison with electrical fields used in EEG.

Therefore, MEG is less distorted by non-linearity of the head tissues but is more

noisy than EEG due to complexity of the measurements. The temporal resolu-

tion of EEG is higher than MEG. EEG can also be recorded at the same time

as MEG so the recorded data benefit from the high temporal resolution of EEG.
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2.1.3 EEG Rhythmic Activities

EEG is usually described with respect to its rhythmic activities. The rhyth-

mic activity is typically characterized by the frequency bands. It is noted that

the EEG rhythmic activity in a certain frequency interval (band) has a certain

scalp distribution and/or a certain biological importance. Traditionally spectral

methods are used in order to extract EEG rhythmic activity in a certain fre-

quency band. In the following the six most important EEG rhythmic activities

in different frequency bands are briefly described.

• Delta is a rhythmic activity in the range of 0.5-4 Hz which was found and

introduced by Walter [8] as a rhythmic activity below 8 Hz. However later

Walter and Dovey [9] established the rhythmic activity below 4 Hz as the

delta rhythmic activity. Delta rhythm contains the high amplitude waves.

It is usually seen in babies, adults in sleep and during some sustained

attention [10]. The location of the delta wave is in the frontal part of

the adult brain and posterior parts of the children brain. Delta rhythmic

activity is prominent over the anterior regions of the brain in the deep

stage of sleep [2].

• Theta is a rhythmic activity in the range of 4-8 Hz that was introduced

by Walter and Dovey [9]. It is usually seen in children and in the state

of drowsiness or arousal of the older children and adults. It also has been

found to be associated with the inhibition of the elicited responses [10].

It has been shown in [9] that theta activity is associated with emotional

processes and it appears at the interruption of a pleasurable stimulus.

Theta activity in the range of 6-7 Hz over the frontal regions of the brain

has been found to be correlated with mental activities [11, 12, 13].

• Alpha is a rhythmic activity in the range of 8-13 Hz. It has been found

in the state of relaxing, closing eyes, and relative mental inactivity [14].

Posterior parts of the head are the main generators of the alpha rhythm.

The alpha rhythm is expected to be blocked or attenuated by attention,

visual, and mental effort [14]. However, there are some reports that in most

cases the alpha rhythm is not attenuated or blocked by mental efforts such

as solving arithmetics [15]. Other factors such as difficulty of the task,

motivation of the subject to please the examiners play an important role

on blocking of alpha rhythm [2].

• Mu is a rhythmic activity in the range of 8-13 Hz. It is almost in the same

frequency as alpha rhythm and is sometimes confused with that. However

it is different from alpha rhythm in terms of topography and physiological
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significance [2]. Mu rhythm is seen over the sensorimotor cortex. It is

significantly suppressed during contralateral motor acts [16, 17]. It is shown

that Mu rhythm is suppressed in somatic areas of the cortex when an

epileptic patient is observing the moving body parts [18].

• Beta is a rhythmic activity in the range of 13-30 Hz. It contains low

amplitude waves which are mostly evident in frontal and central parts of

the brain. The distribution of the beta rhythm is symmetrical and in both

sides of the head. The beta rhythm is most evident when the brain is active,

busy or in the state of concentration. Like Mu rhythm, beta rhythm can

be attenuated with the movement, especially contralateral movement, and

even with the thinking about carrying out the movement [2].

• Gamma is a rhythmic activity in the range of 30-100 Hz. The amplitude

of gamma rhythm is usually very low and its appearance is rare. The

gamma rhythmic activities around 40 Hz over brain central regions have

been observed around movement onset [19] which is associated with event

related synchronization (ERS). The ERS of gamma wave is used in [20] to

demonstrate the locus for right and left index finger movement, right toes,

and bilateral area for finger movement.

Effective and adaptive extraction of EEG rhythmic activities for estimation

of their synchronization across different brain regions and frequency bands is

exploited in Chapter 4.

2.2 Event Related Potentials

ERP is often considered as any stereotyped electrophysiological response to an

external or internal stimulus [21]. Although ERPs can be measured with EEG,

since EEG reflects thousands of simultaneously ongoing brain responses ERPs

are not usually visible in the EEG recording from a single trial. One conventional

method to extract ERPs is to average EEG over a large number of trials which

are the brain responses to the stimulus so that the non-ERP related activities

are filtered out and ERPs will become visible.

ERPs are useful for analysis of brain functional and mental abnormalities [2].

Single trial ERPs are of particular interest since the dynamics of brain responses

can be followed. Therefore, there has been a great interest in estimation of

ERPs. Estimation of single trial ERPs are considered in this thesis in Chapters

5 and 6.
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2.2.1 P300

P300 is one of the main component of ERPs. It is a positive wave around

300 ms after the stimulus onset. It usually occurs after an auditory, visual, or

somatosensory stimulus. The acquisition of P300 is easy. P300 often has a large

amplitude (5-20µV). Amplitude of P300 is denoted as the largest peak of ERP

waveform within a time window around 300 ms. Latency of P300 is denoted at

the time from the stimulus onset to the timing of the largest positive peak of

P300 (e.g. P300 amplitude) [22]. P300 amplitude is usually larger in parietal

electrode sites [23].

P300 is typically elicited using an oddball paradigm. There are different vari-

ations of the oddball task. In an oddball task which contains only one stimulus

type, the infrequent stimulus is presented as the target. In a typical two-stimulus

oddball a number of infrequent targets are presented in a background of frequent

stimuli. In a typical three-stimulus oddball, a number of infrequent target are

presented in a background of frequent stimuli and also a number of infrequent

distractor stimuli.

In all types of oddball paradigms, the task of the subject is to respond to the

target stimulus often by pressing a button or by counting the number of target

stimuli. In single and two-stimulus oddball, the response of the subject to the

infrequent target stimulus does elicit a P300 [22]. However in the three-stimulus

oddball, the response of the subject to the infrequent target does elicit P3b and

the infrequent distractor causes elicitation of P3a [22].

P3a and P3b are subcomponents of P300. The scalp distribution of P3a usu-

ally has maximum amplitude in frontal/central regions while for P3b the scalp

distribution is maximum in parietal regions of the brain. P3a and P3b can also

be obtained by decomposing the P300 obtained in a single or two-stimulus odd-

ball paradigm to its constituent subcomponents. One popular method which

initially applied for decomposing P300 in a two-stimulus oddball paradigm is

principal component analysis (PCA) method [22]. Considering the inter-trial

variability of P300 and its subcomponents, the existence of correlated noise, the

temporal/spatial correlation between the P300 subcomponents, PCA method is

not a reliable method for estimation of P3a and P3b. Therefore, there is a need

for a reliable and robust method for single trial estimation of P300 subcompo-

nents that is one of the main objectives in this thesis and is exploited in Chapters

5 and 6.
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2.3 Summary

In this chapter a brief introduction about EEG and ERPs, which will be useful in

development of the rest of the thesis, is provided. The EEG recording procedure

is briefly described. Then, EEG is compared with other techniques such as

fMRI, PET, MEG. In addition, an important characteristic of EEG which is its

rhythmic activity is explored. Finally, ERPs including P300 subcomponents are

briefly described.



Chapter 3

Recognition of Mental Fatigue:

Tools and Algorithms

In this chapter first fatigue and the motivation for its recognition and monitoring

are described. Then, two main approaches for mental fatigue analysis that are

used in literature are explained. These approaches include ERP and EEG based

analysis of mental fatigue. New directions in both ERP and EEG based methods

for analysis of mental fatigue, which are the main objectives of this thesis, are

suggested. Since PF and KF approaches are used in two chapters for two different

purposes, their fundamentals are provided in the last section of this chapter.

3.1 Fatigue and its Research Motivation

FATIGUE is a common phenomenon that exists in our everyday life. It is defined

in medicine as “that state, following a period of mental or bodily activity, char-

acterized by a lessened capacity for work and reduced efficiency of accomplish-

ment, usually accompanied by a feeling of weariness, sleepiness, or irritability”

[24]. Therefore, fatigue can have physical or mental components. The concept of

mental fatigue is introduced in [25] where it is clearly distinguished from physi-

cal fatigue. Based on [25], physical fatigue is assumed to be related to reduced

muscular system performance while mental fatigue is related to reduced mental

performance and alertness. Based on some research on driver fatigue, it has been

found that there is a cortical deactivation in the mental fatigue state [26, 27, 28].

There are many occupations in aviation, military, aerospace, transportation,

medicine, and industrial settings in which the operators continuously perform

complex or exhaustive tasks. The state of reduced performance of the operators

as a result of fatigue has caused many disasters, mostly not well known to the

public. These disasters include the nuclear plant accidents at Three-Mile Island

and Chernobyl and grounding of the oil tanker Exxon Valdez that was a transport

11
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disaster [29, 30]. There are also other evidences that the fatigued individuals

have contributed to the major incidents and accidents in industrial operations.

Recent investigation of crash data has provided a new insight which shows the

risk involved for the driver under fatigue is more than when using alcohol or cell-

phone [31]. Therefore, scientific interests in monitoring, assessing and predicting

the fatigued operator have been increasing recently.

As it is mentioned above, fatigue can be classified as physical and mental

fatigues. The focus in this thesis is on mental fatigue. Mental fatigue can

be analysed using EEG signals. Assessment of mental fatigue based on the

recorded EEG can be performed from two main directions. One is EEG-based

analysis of mental fatigue. Physiological based changes of EEG signal in the

fatigue state have been reported in mental fatigue analysis. This direction is

explained in Section 3.2. Another direction is to evaluate the changes in ERP

waves (which should be first separated from background EEG) usually in a time-

locked experiment about one second after stimulus onset in the fatigue state.

This direction is explained in Section 3.3.

3.2 EEG-based Analysis of Mental Fatigue

Using EEG, it is possible to examine the physiological changes related to mental

fatigue [1]. EEG is the electrical activity of the brain that enables the study of

brain functions with a high time resolution, although the spatial resolution is

relatively modest [32].

In traditional EEG-based analysis of mental fatigue, power spectrum of EEG

in different frequency bands is considered as the key EEG feature [1]. Then, the

observed changes of power spectrum of EEG in certain frequency bands and in

certain brain regions are reported for quantification of mental fatigue.

One of the most common findings in EEG studies of mental fatigue is that

when the level of alertness drops, the EEG signal contains more slow and high

amplitude waves than fast and low amplitude waves. More specifically, when the

level of arousal decreases, the low-frequency theta and alpha activities continu-

ously increase which can be due to the decrease in cortical activation [33, 34].

When subjects become fatigued, it is expected that the level of arousal drops

and this can be related to the increase in alpha and theta power spectrum [35,

36, 37, 38, 39]. Therefore, based on most previous studies, the amount of alpha

and theta power spectrum can provide an index of the level of mental fatigue

that subjects experience.

However, the reports of previous research on EEG changes regarding the

mental fatigue are varying and even are conflicting [40]. This can be due to
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methodological limitation since most of them use classic statistical analysis, or

can be due to different experimental setup. Therefore, there is a challenge to

design an appropriate task and extract the key EEG features for EEG-based

monitoring and identification of mental fatigue.

Mental fatigue is assumed to be associated with cortical deactivation of the

functional lobes of the brain. This usually results in mis-communication between

brain regions [41]. Therefore, the experimental setup for monitoring mental fa-

tigue should satisfy several criteria in order to be able to examine brain changes

and mechanism of the modulating deactivation, activation, and information pro-

cessing between the functional lobes of the brain. The following criteria are

found to be effective [40]:

(i) The task should contain as many functional lobes as possible,

(ii) The task performance should be dependent on the correct information pro-

cessing such as decision making of the pre-frontal brain lobe and correct com-

munication among different functional brain lobes (e.g. working memory).

(iii) The task should require the subjects to attain constant attention and alert-

ness but contain little skill and learning effect.

In a three-hour experiment in [1] the increases in alpha, theta, and beta

powers were observed. In addition, the subjective measures acquired from the

subjects indicated that they became more fatigued during the task performance.

In [38] it has been discussed that the increase in lower-alpha power can be related

to increased efforts by the subjects to remain alert. In [1] it is reported that

observed increase in lower-alpha power has shown to be significantly correlated

with the increase in the level of fatigue reported by the subjects.

Since the development of machine learning algorithms, it has also been pos-

sible to benefit from the recently developed algorithms for monitoring mental

fatigue. Random Forests (RF) has shown superior performance for classification

and feature selection in many practical applications [42, 43]. In [44], the EEG-

based monitoring of fatigue in multi levels has been performed by exploiting RF.

Therefore, RF is used in [44] for extracting key EEG features and multi-level

monitoring of mental fatigue. The initial features are extracted by consider-

ing the calculated power spectral density in the four standard frequency bands

(delta, theta, alpha, beta) from 19 channels using fast Fourier transform with

Hanning window [45]. After feature reduction and classification, 17 key fea-

tures are found which most of them correspond to the electrodes in the frontal

and occipital regions of the brain. These key EEG features are related to all

four standard frequency bands. Therefore, all frequency bands play a role in
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monitoring multi-level mental fatigue.

In a recent study on EEG-based analysis of mental fatigue, approximate

entropy (ApEn) and Kolmogorov complexity (Kc) [46, 47, 48] are used in order

to quantify the complexity of EEG signal under two mental fatigue states [49].

Then, kernel principal component analysis (KPCA) [50, 51] and Hidden Markov

Model (HMM) [52] are combined to classify the two mental fatigue states.

A functional relationship between different brain regions is generally associ-

ated with synchronous electrical activities in these regions [53]. Recorded EEGs

can be used for measuring synchronization of different brain regions. Analysis

of mental fatigue from EEG perspective in this thesis is devoted to measure-

ment of the linear and non-linear synchronization of different brain regions by

exploiting adaptive methods such as EMD [54] and ALE [55] algorithms. The

synchronization measures can reveal useful information about the changes in

the functional connectivity of brain regions during the fatigue state which are

evaluated in Chapter 4.

3.3 ERP-based Analysis of Mental Fatigue

One conventional approach to extraction and analysis of the ERP components is

by averaging the time-locked single trial ERPs. This approach assumes that the

ERP wave remains constant across trials and averaging over time-locked single

trials attenuates the background EEG which is considered as a random process.

In many real applications, this assumption is not realistic. For example, changes

in the degree of mental fatigue, habituation, or the level of attention, can af-

fect the ERP waveform; therefore, the inter-trial variability of ERP components

would be ignored by averaging the ERPs over a number of trials. Trial to trial

variability of ERP components is also an important key in order to investigate

some brain abnormalities such as schizophrenia and depression [56, 57].

An effective analysis of ERPs should thus be based on single trial estimation.

Several methods based on statistical signal processing including Wiener [58],

maximum a posteriori (MAP) [59] and KF approaches [60, 61] have been used in

single trial estimations. Other popular methods are proposed in [4, 62] and [63]

which are based on PCA and ICA. These methods are not suitable in low SNRs

or when there are possible dependency or correlation between the components.

Sparse component analysis also has been used for estimation of ERP com-

ponents [64]. The main focus of most of the above methods has been on single

trial estimations of ERP components. These methods often fail in many situa-

tions because of very low signal to background noise power ratios and inter-trial

variability of the recorded ERPs.
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Inter-trial variability of ERPs has been considered in some other studies

[65, 66, 67]. In [67] single trial parameters of the ERP and the autoregressive

representation of the ongoing activity are obtained simultaneously. A recent

work in [68] formulates wavelet coefficients of the time-locked measured ERPs in

the state space and then estimates the ERP components by applying PF. It is

shown that the formulated PF outperforms KF. Although in these methods inter-

trial variability of ERP components are taken into account, they are appropriate

only for single trial estimation. These methods however fail in estimation of the

ERP subcomponents particularly when they overlap in temporal domain. In the

following it is explained that ERP subcomponents such as P300 subcomponents

are very useful and important for mental fatigue analysis. Therefore, some new

methods for ERP subcomponent estimation are demanded which consider the

correlations between the ERP subcomponents and enable their separation over

the temporal/spatial domain.

As explained in the previous chapter, one of the main ERP components is

P300 that contains two subcomponents; P3a and P3b. These subcomponents

usually have temporal correlation and overlap over the scalp [22]. The P300

component has been found to be useful in identifying the depth of cognitive in-

formation processing [69]. It has been reported that the P300 amplitude elicited

by mental task loading decreases with an increase in the perceptual/cognitive

difficulty of the task and its latency increases when the stimulus is cognitively

difficult to process [22, 70, 71, 72, 73, 74]. Therefore, extracting and analysing

P300 before and during fatigue state have been of great interest among men-

tal fatigue researchers. However, in more recent researches in mental fatigue

analysis in [69] and [70], it has been suggested to detect and evaluate the P300

subcomponents before and during fatigue state because it has been shown that

the averaged P300 does not always correspond to manifestation or appearance

of mental fatigue. Therefore, analysis of mental fatigue based on ERP must be

performed from multiple aspects using not only P300 amplitude and latency but

also feature parameters related to its subcomponents such as P3a and P3b.

Some research has been carried out using blind source separation (BSS) and

PCA for the estimation of P300 subcomponents [69, 75, 76, 77, 78] for decompo-

sition of the P300 into its subcomponents. In some studies PCA has been applied

to the averaged ERP [79, 80, 81]. These methods are suitable for stationary data

and therefore, not recommended for separation of ERP subcomponents, which

are generally non-stationary. The major problem with these methods is that

when there is a high temporal correlation between the subcomponents, low sig-

nal to noise ratio ERPs or in the case of existence of correlated noise, they fail to

produce correct results. In some cases they are able to estimate only one of the
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subcomponents. Therefore, a more reliable method for single trial estimation of

the P300 subcomponents which can be effectively used in mental fatigue analysis

is highly demanded.

One of the main directions in this thesis is to estimate P300 subcomponents

in single trial recordings. In Chapter 5, PF is used to track P300 subcompo-

nents in different trials. The proposed method is applied to a subject which goes

under fatigue in a visual based experiment. The method considers the temporal

variations of the P300 subcomponents in different trials. Therefore, some auxil-

iary methods should be employed in order to estimate spatial distribution of the

P300 subcomponents. In [82], a spatial notch filter is used to localize the ERP

subcomponents in the brain. In this approach although the correlation between

the desired ERP component and the background EEG has been exploited, the

correlation between the ERP subcomponents is ignored. This motivated us to

introduce a new spatio-temporal filtering method in Chapter 6 for robust single

trial estimation of the spatially or temporally correlated ERP subcomponents.

The method can be effectively used for P300 based analysis of mental fatigue in

future studies.

In this thesis PF is used for separation and tracking of P300 subcomponents

in single trials and also for phase tracking of oscillations in EEG signals. There-

fore, in the next section, fundamentals of PF, KF, and Rao-Blackwellised particle

filtering (RBPF) are explained.

3.4 Fundamentals of KF, Basic PF, and RBPF

In this study Basic PF (called PF from now on) and RBPF approaches are used

for proposing new methods for ERP subcomponent tracking and EEG phase

tracking. Since RBPF uses KF in order to estimate the linear state variables,

in this section PF, KF, and RBPF are explained. PF usually is suitable for

non-linear state space while KF is appropriate for a linear state space. RBPF,

on the other hand, is useful for the case that it is possible to partition the state

variables into linear and non-linear parts. The RBPF then estimates the linear

part by KF and the non-linear part by PF. In the following first in Section 3.4.2

KF is described. Then, PF and RBPF are explained in Sections 3.4.3 and 3.4.4

respectively.
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3.4.1 Problem Formulation in State Space

In order to define and formulate the problem of tracking [83], the state sequence

{xk, k ∈ N} of a target can be considered as:

xk = fk(xk−1,nk−1) (3.1)

where fk is generally a non-linear function of the state xk−1 and {nk−1, k ∈ N}
is an i.i.d. noise sequence. The objective of tracking is to use all available

observations zk and recursively estimate xk:

zk = hk(xk,vk) (3.2)

where hk is the non-linear function and {vk, k ∈ N} is an i.i.d. measurement

noise sequence. In particular, we search for the filtered estimates of xk based

on all available measurements z1:k = {zi, i = 1, ..., k} up to time k. Using the

Bayes theorem and assuming that the state xk and observation zk are Markov

processes, the observation at time iteration k which is zk is used in order to

recursively update the posterior density of the state:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(3.3)

Assuming that p(xk−1|z1:k−1) at iteration k − 1 is available, p(xk|z1:k) can be

computed using the Chapman-Kolmogorov as:

p(xk|z1:k−1) =

∫

all xk−1

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (3.4)

In equation (3.3), p(zk|z1:k−1) is a normalizing constant and it only depends on

the observation model in equation (3.2) and the statistics of the noise nk:

p(zk|z1:k−1) =

∫

all xk

p(zk|xk)p(xk|z1:k−1)dxk (3.5)

Tracking and estimation of the state of the system is possible by solving the

above equations and recursions. However in real world applications, usually

it is difficult to compute the normalizing constant p(zk|z1:k−1), the marginal

posterior density p(xk|z1:k−1) and consequently the posterior density p(xk|z1:k).

The computations should be conducted in high-dimensional complex integrals.

Therefore, much effort has been done in order to solve the recursions in the above

equations. KF and PF are among popular approaches. As it is stated in the

beginning of the section, the KF is useful for analysis of linear systems and PF

for analysis non-linear systems. In the following subsections both of them are

described. Finally, the RBPF is explained briefly.
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3.4.2 Kalman Filtering

In KF the state space is assumed to be linear and by making a number of as-

sumptions which are explained below, the posterior density becomes Gaussian

[83]. Therefore, only the mean and covariance matrices are calculated in each

step. First, it is assumed that the state transition and observation functions are

known and linear functions. Therefore, equations (3.1) and (3.2) can be rewrit-

ten as:

xk = Fkxk−1 + nk−1 (3.6)

zk = Hkxk + vk (3.7)

nk−1 and vk are assumed to be mutually independent and are drawn from Gaus-

sian distributions. They are considered to be white Gaussian noise (WGN) with

known covariances Qn
k−1 and Qv

k respectively. The initial distribution (prior dis-

tribution) p(x0) = N (x;m0,P0) is assumed to be Gaussian with known mean

m0 and covariance matrix P0, N (x;m,P) refers to a Gaussian distribution of

x with mean m and covariance P. Based on the above assumptions, the KF is

reduced to the following recursive equations:

p(xk−1|zk−1) = N (xk−1;mk−1,k−1,Pk−1,k−1)

p(xk|zk−1) = N (xk;mk,k−1,Pk,k−1)

p(xk|zk) = N (xk;mk,k,Pk,k)

(3.8)

where mi,j and Pi,j are the mean and covariance of the conditional density

p(xi|xj). The used parameters (mean and covariance in the above equations)

are calculated in two steps, namely KF prediction and update steps, as:

• Prediction step:

mk,k−1 = Fkmk−1,k−1

Pk,k−1 = Qn
k−1 + FkPk−1,k−1F

T
k

(3.9)

• Update step:

mk,k = mk,k−1 + Kk(zk − Hkmk,k−1)

Pk,k = Pk,k−1 − KkHkPk,k−1

(3.10)
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where

Sk = HkPk,k−1H
T
k + Qv

k

Kk = Pk,k−1H
T
k S−1

k

(3.11)

are the covariance of the innovation term zk −Hkmk,k−1 and the Kalman gain,

respectively. Also, in the above equations (.)T denotes matrix transpose opera-

tion. If all the assumptions are hold for a system, the KF results in an optimal

solution. Therefore, in the linear Gaussian system where the state distribution

is Gaussian, KF is the best estimator.

3.4.3 Particle Filtering

PF is a powerful technique for sequential signal processing which has variety of

applications in array and video processing and target tracking. The key idea

behind PF is to represent the required posterior density function p(xk|z1:k) by

a set of random samples with their associated weights and then compute the

estimates based on these samples and weights. Therefore, the posterior distribu-

tion can be approximated by particles {x(n), n = 1, . . . , Ns} and their associated

weights {w(n), n = 1, . . . , Ns} as [83]:

p(xk|z1:k) ∝
Ns∑

i=1

w
(i)
k δ(xk − x

(i)
k ) (3.12)

Since it is not feasible to draw samples from the posterior density before it is

estimated, the samples are drawn from a so called importance density. This is the

principle of importance sampling [84] in which the samples are easily generated

from the importance density. Then, the weights in equation (3.12) are defined

by:

w
(i)
k =

p(xi
k|z1:k)

q(xi
k|z1:k)

(3.13)

where q(.) is the importance density. If the importance density is chosen such

that it can be factorized to:

q(xk|z1:k) = q(xk|xk−1, z1:k)q(xk−1|z1:k−1) (3.14)

then it is possible to obtain samples xi
k ∼ q(xk|z1:k) by augmenting each of the

existing samples xi
k−1 ∼ q(xk−1|z1:k−1) with the new state q(xk|xk−1, z1:k). Via

the Bayes rule p(xk|z1:k) is first expressed in terms of p(xk−1|z1:k−1), p(zk|xk),

and p(xk|xk−1) in order to derive the weight update equation [83]:

p(xk|z1:k) ∝ p(xk−1|z1:k−1)p(zk|xk)p(xk|xk−1) (3.15)
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By substituting equations (3.15) and (3.14) into equation (3.13), the weight

update equation can be obtained as:

w
(i)
k ∝

p(x
(i)
k−1|z1:k−1)p(zk|x(i)

k )p(x
(i)
k |x(i)

k−1)

q(x
(i)
k |x(i)

k−1, z1:k)q(x
(i)
k−1|z1:k−1)

= w
(i)
k−1

p(zk|x(i)
k )p(x

(i)
k |x(i)

k−1)

q(x
(i)
k |x(i)

k−1, z1:k)

(3.16)

The most popular choice for the importance density is the prior density. Selecting

the prior density as the importance density is simple and intuitive, however, this

selection leads to higher error in estimation in some applications especially when

low number of particles are used. Therefore, in [83] it is suggested to draw the

samples from the likelihood (rather than prior density) where applicable. In

this research a reasonable number of particles are used and therefore, the prior

density is used as the importance density:

q(x
(i)
k |x(i)

k−1, z1:k) = p(x
(i)
k |x(i)

k−1) (3.17)

Substitution of equation (3.17) into equation (3.16) yields:

w
(i)
k ∝ w

(i)
k−1p(zk|x(i)

k ) (3.18)

Based on the above equation the weight of each particle is obtained from

its weight in the previous trial multiplied by the likelihood of the observation

given the current state by the corresponding particle. In the subsequent trials,

the weight of a large number of particles can become small. The contribution of

these particles to the estimation of posterior density is very trivial while large

computations are performed in order to update the weights of these particles.

The resampling technique [83] is proposed to avoid such situations by eliminating

the particles with small weights and replicating those with large weights. The

initial values for particle weights are usually the same and the particles are

generated randomly. However it can be useful to initialize the particles in order

to place them into the right part of the posterior density. Particle initialization

is effective in the case of having high dimensional state space. This can also

improve the speed of convergence.

3.4.4 Rao-Blackwellised Particle Filtering

The RBPFs are an extension of the PFs for which the state space is conditionally

linear. The RBPF reduces the size of the state space by marginalizing out some

of the variables analytically. Therefore, a reduced number of particles are needed
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for the RBPF to achieve the same performance as for the PF. Consider the case

that it is possible to partition the state vector xk as:

xk =


 x1

k

x2
k


 (3.19)

where x1
k denotes the non-linear state variable and x2

k denotes the state variable

with conditionally linear dynamics. In order to see how RBPF works, consider

the following linear Gaussian state space [85]:

x1
k ∼ p(x1

k|x1
k−1) (3.20)

x2
k = Bk−1(x

1
k−1)x

2
k−1 + w2

k−1 (3.21)

zk = Ck(x
1
k)x

2
k + vk (3.22)

where x1
k is a Markov process, w2

k−1 ∼ N (0,Qw
k−1),vk ∼ N (0,Qv

k) and N (m ,P)

is a Gaussian pdf of mean m and covariance P. In equation (3.21), Bk−1(x
1
k−1)

represents a state transition for the linear state variable. In equation (3.22), Ck

is a function of non-linear state variable that can be combined with the linear

state variable to model the observation. Subject to a given x1
k,x

2
k is a linear

Gaussian state space model.

Suppose the posterior density p(x1
k,x

2
k|z1:k) can be factorized as:

p(x1
k,x

2
k|z1:k) = p(x2

k|x1
k, z1:k)p(x1

k|z1:k) (3.23)

Here p(x2
k|x1

k, z1:k) is analytically tractable and can be computed by the KF.

In addition, p(x1
k|z1:k) can be estimated using PF [83]. The RBPF results in a

lower variance of the estimates compared with that of the commonly used PF.

Given a conditionally linear Gaussian state space model and using the KF, the

mean (µk) and covariance (Pk) of the linear state variable x2
k can be estimated

as follows [85]:

µk|k−1 = Bk−1(x
1
k−1)µk−1 (3.24)

µk = µk|k−1 + Kk(zk − Ck(x
1
k)µk−1) (3.25)

Pk = Pk|k−1 − KkCk(x
1
k)Pk|k−1 (3.26)

Kk = Pk|k−1C
T
k (x1

k)(Ck(x
1
k)Pk|k−1C

T
k (x1

k) + Qv
k)

−1 (3.27)

Pk|k−1 = Bk−1(x
1
k−1)Pk−1B

T
k−1(x

1
k−1) + Qw

k−1 (3.28)
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3.5 Summary

In this chapter the tools and algorithms for mental fatigue analysis considering

two directions based on EEG and ERP signals are explained in which new ap-

proaches for mental fatigue analysis are also suggested. These approaches are

exploited in the following chapters. Finally the fundamentals of PF, KF, and

RBPF are explained. These tracking based algorithms are used in the following

chapters for specific purposes.



Chapter 4

Estimation of EEG Phase

Synchronization with

Application to Mental Fatigue

4.1 Introduction

EEG is the recorded electrical activity of the brain that enables the study of

brain functions and it is a valuable source of information for the study of mental

fatigue. As it is stated in Chapter 3, Section 3.2, recorded EEGs can be used

for measuring synchronization of different brain regions and therefore evalua-

tion of mental fatigue. These measurements represent the connectivity among

various brain lobes. In this chapter we seek to measure the linear and non-

linear synchronization of different brain regions by exploiting EMD algorithm

[54]. Then, a new and effective approach for mental fatigue analysis based on

phase synchronization and coherence is presented.

EMD as a fully adaptive and data-driven method for analysing non-linear

systems and non-stationary time series, is presented for decomposing the single-

channel EEG signal into its oscillations. Based on the proposed approach, first

a brain region is selected and then the EMD algorithm, as a signal-dependent

decomposition method, is applied to one channel of the EEG time series in

the selected region to decompose it to a number of waveforms modulated in

amplitude and frequency. The iterative extraction of these components called

intrinsic mode functions (IMFs), is based on local representation of the signal as

sum of a local oscillating component and a local trend.

The IMFs can be considered as the reference signals for the brain rhythmic

activities. The EMD algorithm is applied to the desired channel and each time,

based on the resulted instantaneous frequencies as explained in Section 4.5.1, one

of the extracted IMFs is considered as the EEG activity in a certain frequency

23
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band. One important issue is that the extracted IMFs might be noisy. This noise

is more destructive for signals of higher frequencies since the noise distorts zero-

crossings of the signals, which are crucial in IMF estimation. In some researches,

some conventional filtering techniques are suggested to remove the noise from

the IMFs. This may result in loss of phase information which is crucial for our

application.

Among filtering methods, ALE is an established adaptive approach for restora-

tion of cyclic signals [86]. Here, we apply the ALE to the resulted IMF which

may contain wide-band noise. Since the ALE exploits the cyclic nature of the

IMFs, enhancement of the IMF by ALE is more effective than filtering it using

conventional filtering even if the filter is zero-phase. Therefore, the IMFs can

be filtered by an ALE algorithm. In addition, the superiority of using ALE to

conventional filtering has been tested using simulated signals.

Then, by applying Hilbert transform (HT) to several enhanced IMFs from

different parts of the brain, the linear and non-linear synchronization measures

are estimated. These measures can be estimated using the selected IMFs in

different brain regions for the subject before and during fatigue state. These

measures are important for detecting and evaluating the mental fatigue in real

world applications. The changes in linear and non linear synchronization levels

are estimated for determination of the fatigue state.

The remainder of the chapter is structured as follows. In Section 4.2 the EMD

is described. Then, in Section 4.3 the ALE method is briefly explained and in

Section 4.4, the linear and non-linear synchronization measures are explained.

Experimental results using EMD enhancement followed by the estimation of

synchronization measures are discussed in Section 4.5. In Section 4.6 a new

method for estimation and tracking of instantaneous phase (IP) of the EEG

oscillations is proposed. This method should be further developed in the future

studies in order to make it applicable for mental fatigue analysis. Finally, Section

4.7 concludes the chapter.

4.2 Empirical Mode Decomposition

EMD [54] is a non-linear technique which is applied to non-stationary signals

in order to represent them as sum of their IMFs. Each resulted IMF by the

EMD method satisfies two basic conditions: (i) in the complete data set, the

number of extrema and the number of zero crossings must be the same or differ

at most by one, (ii) at any point, the mean value of the envelope defined by the

local maxima and the envelope defined by the local minima is zero. The EMD

algorithm [87] for the signal z(t) can be summarized as follows:
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1. Set g1(t) = z(t)

2. Detect the extrema (both local maxima and local minima) of g1(t)

3. Generate the upper and lower envelopes em(t) and el(t) respectively by con-

necting the maxima and minima separately with cubic spline interpolation

[88]

4. Determine the local mean as: m(t) = em(t)+el(t)
2

5. IMF should have zero local mean; subtract m(t) from the original signal as:

g1(t) = g1(t) −m(t)

6. Decide whether g1(t) is an IMF or not by checking the two basic conditions

as described above

7. Repeat step 2 to 6 and stop when an IMF g1(t) is obtained.

Once the first IMF is derived, define d1(t) = g1(t), which is the smallest temporal

scale in z(t). For obtaining the rest of the IMF components, generate the residue

r1(t) of the data by subtracting d1(t) from the signal as: r1(t) = z(t) − d1(t).

r1(t) is considered as the new data and subjected to the sifting process (steps 1

to 5) as explained above. Here, the stopping criterion (for the sifting process)

proposed in [89] has been used. The process of extracting IMFs is terminated

when the final residue is a constant, monotonic function, or a function with only

one maxima and one minima that no more IMF can be obtained. At the end of

the decomposition the signal z(t) is represented as:

z(t) =

M∑

p=1

dp(t) + rM (t) (4.1)

where M is the number of IMFs and rM (t) is the final residue. The EMD

algorithm is applied to one channel of EEG data each time to decompose it to

different rhythms. In some cases, especially for the first generated IMFs, the

IMF is noisy and contains some wide-band noise. Here, it is suggested to use the

ALE in order to enhance the IMF. In the next section the adaptive line enhancer

algorithm is described briefly.

4.3 Adaptive Line Enhancer

The aim of an ALE is to retain the narrow-band components in the observed

data with the aim of reducing or removing any broadband components [86]. The

only assumption that is required for operation of the ALE is that the signal of

interest should be narrow-band [86]. Since the ALE is adaptive, it is able to track

non-stationary signals. There are many applications such as sonar, biomedical,

and speech signal processing which make use of ALE. A block diagram of an ALE

system considering its usage in our application, for denoising and enhancing the
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Figure 4.1: Block diagram of an adaptive line enhancer system for denoising and en-
hancing an IMF.

IMF, is shown in Fig. 4.1. The ALE can be considered as a degenerate form of

the adaptive noise canceller. The reference signal in the ALE, instead of being

generated separately as in the adaptive noise canceller, is a delayed version of

the input signal [55].

Therefore, the delay ∆ is considered as the prediction depth of the ALE

and is measured in units of the sampling period. A transversal filter is used to

process the reference input u(t − ∆) for generating the error signal e(t), which

is defined as the difference between the actual input u(t) and the ALE’s output.

In our application ∆ is equivalent to a multiple of the cycle period of the desired

IMF. The error signal is used in the adaptive algorithm to adjust the weights

of the transversal filter, mainly according to Widrow’s least mean square (LMS)

algorithm [55]. The tap-weight adaptation can be written as:

w(t+ 1) = w(t) + µu(t− ∆)e(t) (4.2)

where w(t) is the coefficient vector at time t, µ is the step size, e(t) is the

adaptation error and u(t − ∆) is the input vector, respectively, at time t. In

the case of a fixed step size LMS algorithm, µ is chosen as a constant. The

extracted IMFs by the EMD algorithm applied to the EEG signals, each varies

around certain frequency. So they are narrow-band. The mode change may

cause shift in the frequencies between nearby IMFs which still makes the IMF

narrow-band. Therefore, we can apply the ALE to those extracted IMFs which

are noisy. After applying the ALE to the IMFs, it is possible to compute the

synchronization measures of the different enhanced IMFs obtained from different

parts of the brain. In the next section the linear and non-linear synchronization
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measures are explained.

4.4 Synchronization Measures

4.4.1 Linear Measure of Synchronization

Suppose we have two IMFs simultaneously obtained from different channels.

Every IMF is a real valued signal. The discrete HT [54] is used to compute the

analytic signal for an IMF. The discrete HT denoted by Hd[.] of signal x(t) is

defined as:

Hd[x(t)] =

+∞∑

δ=−∞
δ 6=t

x(δ)

t− δ
(4.3)

The analytic version of the ith IMF di(t) is defined as:

ci(t) = di(t) + JHd[di(t)] = ai(t)e
Jθi(t) (4.4)

where J =
√
−1 and ai(t) and θi(t) are the instantaneous amplitude (IA) and

IP of the ith IMF respectively. The analytic signal is used for determining the

instantaneous quantities such as energy, phase, and frequency. The discrete time

instantaneous frequency (IF) of the ith IMF is then defined as the derivative of

the phase θi(t) calculated at t:

ωi(t) =
dθi(t)

dt
(4.5)

Distribution of the signal energy as a function of time and frequency is repre-

sented by the Hilbert Spectrum (HS). If we partition the frequency range into k

frequency bins, then, HS of the ith IMF can be defined as the IA of the IMF at

the kth frequency bin:

hi(k, t) = ai(t)v
k
i (t) (4.6)

where the vk
i (t) takes the value 1 if ωi(t) falls within kth band, otherwise, vk

i (t) =

0. The marginal spectrum corresponding to the HS hi(k, t) of the ith IMF is

defined as:

ψi(k) =

T∑

t=1

hi(k, t) (4.7)

where T is the length of the data. Using this information, the coherence function,

which gives a measure of linear synchronization between the two IMFs, can be

defined as:

ζij(k) =
|χi,j(k)|2
ψi(k)ψj(k)

; k = 1, 2, ..., B (4.8)
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where B is the number of frequency bins, χi,j(k) is the cross spectrum of the ith

and jth IMFs, ψi(k) and ψj(k) are the marginal power spectra of the ith IMF

and jth IMF respectively. ζij(k) is a quantitative measure of how much the ith

IMF is correlated with the jth IMF.

4.4.2 Non-linear Measure of Synchronization

It is possible that two dynamic systems have synchronized phases while their am-

plitudes are uncorrelated [90]. Therefore, it is useful to consider phase synchro-

nization as a non-linear measure of synchronization. Two signals are phase syn-

chronized if the (n,m) difference between their phases remains constant across

time [91]. For simplicity, it is possible to assume that m and n are equal to 1.

After finding the IP of the ith and jth IMFs, the phase synchronization measure

can be defined as:

γij = |〈eJθij(t)〉t| =
√

〈cosθij(t)〉2t + 〈sinθij(t)〉2t (4.9)

where 〈.〉 denotes average over time, θij(t) = θi(t) − θj(t), and θi(t) is the IP

of the ith IMF obtained by HT. In this case, γij will be zero if the phases are

not synchronized at all and will be one when the phase difference is constant

(perfect synchronization). The key feature of γij is that it is only sensitive to

phases, regardless of the amplitude of each signal.

4.5 Experimental Results

In this section, first the validity and superiority of the enhanced EMD algorithm

using ALE to the conventional filtering have been tested for a set of simulated

data. Then, a set of real EEG data of a subject which goes under fatigue is

analysed in order to detect the changes of synchronization during the fatigue

state.

4.5.1 Simulated Data

To simulate a single channel EEG, four frequency and amplitude modulated sine

waves belonging to four different frequency bands were generated and added

together.

Then, the Gaussian noise was added to the generated signal. The SNR for

the generated signal is approximately 7dB. This noisy mixture signal is plotted

in Fig. 4.2(a). We have applied the EMD to the simulated EEG signal. In order

to show the effectiveness of the method, the ALE was applied to the extracted

IMFs. Since using the average of instantaneous frequencies the second extracted
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Figure 4.2: (a) The noisy mixture signal (first), actual EEG oscillation in beta frequency
band (second), the extracted IMF (third), and the line enhanced IMF (fourth). (b) The
resulted HS of the actual source (top), extracted IMF (middle) and the line enhanced
IMF (bottom). The colour bar represents the instantaneous amplitude.
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IMF belonged to the beta frequency band range around 20 Hz, we selected that

IMF as beta rhythm and plotted its HS in Fig. 4.2(b). From the HS it can be

seen that the IMF contains some wide-band components. We then applied the

ALE algorithm to the extracted IMF and computed the HS again and plotted

the results. Since a number of iterations are needed at the beginning for the

algorithm to converge, the ALE is applied to a window of longer size then the

resulted signal by the ALE is truncated. The HS of the actual EEG oscillation

in beta frequency band, extracted IMF, and the enhanced IMF are shown in

Fig. 4.2(b). From the plots in this figure it is evident that using the proposed

approach the wide-band noise has been reduced.

We calculated the correlation coefficient of the original simulated oscillation

with both the IMF and the enhanced IMF. In addition, we used a Butterworth

filter and a zero-phase filter of different degrees to filter the extracted IMF and

computed the correlation coefficients of the filtered IMF and the original oscilla-

tion. The highest correlation coefficient of 0.9137 was obtained by the IMF which

was filtered using the ALE. In the next section, we apply the enhanced EMD

algorithm to different channels and compute the synchronization measures of the

brain lobes before and during fatigue state in order to evaluate the corresponding

synchronization changes.

4.5.2 Real Data

The EEG data were recorded from participants who reported to be non-smokers,

to have normal sleep patterns, not to work night shifts, and not to use any pre-

scribed medication. From previous studies it is known that the participants

become more distracted by the information presented at irrelevant spatial lo-

cations with increasing mental fatigue (e.g. see [92]). Therefore, in each trial

a horizontal array of three uppercase letters was presented to the subjects in

which the central one was the relevant target letter and the remaining letters

were distractors. The participants were instructed to make a left-hand response

as quickly as possible if the target letter was an H and a right-hand response if

the central letter was an S and to ignore distractors. The letter array remained

on the screen until a response was given.

In the case that there was no response from the participants, the letter ar-

ray disappeared after 1200 ms. The focus of attention can be manipulated by

advance information [93]. To examine whether individuals still use available in-

formation to prepare for upcoming activities after a prolonged task performance,

an explicit cue was presented for 150 ms, 1000 ms before appearance of the three

letters specifying either the color of the target letter (the Dutch word for ‘red’

or ‘green’) or the response hand (the Dutch word for ‘left’ or ‘right’). The hand
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and color cues were presented randomly with equal probability.

In half of the trials the distractors had the same identity and color as the

target letter (e.g., HHH or SSS: compatible) while in the other half of the trials

they had a different identity and color than the target letter (e.g., SHS or HSH:

incompatible). The stimuli of different types were presented randomly with

equal probability. During each trial a fixation mark remained visible on the

screen (an asterisk of 0.5 × 0.5 cm). The interval between the initial response

to one trial and the beginning of cue presentation on the following trial varied

randomly between 900 and 1100 ms. The subjects were instructed to have a fast

and accurate response and minimize the eye movements and blinking during the

task performance.

The task lasted as a two-hour experimental block without breaks preceded

by a practice block of 80 trials. EEG data was recorded from 22 scalp positions,

using Sn electrodes attached to an electrode cap. Electrode positions based on

extended 10-20 system were F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3,

Pz, P4, P8, O1, Oz, and O2. Additional intermediate positions were FC5, FC1,

FC2, and FC6. The electrodes were referenced to electronically linked earlobes.

Electro-oculograms (EOG) were recorded bipolarly with Sn electrodes from the

outer canthi of both eyes and from above and below the left eye. By adding gel,

electrode impedances were reduced to less than 5kΩ. The signals were lowpass

filtered with the cutoff frequency set at 30 Hz and sampled at a rate of 100 Hz.

Fifteen healthy young women with age ranging from 19 to 25 years partic-

ipated in the experiment. The EEG data of one of the subjects is selected.

Then, two separate segments of data from the first half an hour and last half an

hour are extracted. These segments are respectively, the representations of alert

and fatigue states. Each segment is analysed separately to measure the linear

synchronization (coherence) and non-linear synchronization (phase synchroniza-

tion) between the left and right hemispheres. F7, FC5, P7 channels from the left

hemisphere and F4, FC6, P8 from the right hemisphere are selected. The alpha

rhythm is extracted from F7 and F4, beta rhythm is extracted from FC5 and

FC6 and theta rhythm is extracted from P7 and P8. The overlapped windows

with the length of 4 seconds are considered for applying the HT and estimating

the coherence and phase synchronization.

Selection of the channels in each hemisphere for extracting each rhythm is

based on the HT of the resulted IMFs in several electrodes in the right and left

part of the brain. The IMF is selected from the channel that its resulted IMF

(in a certain frequency band) has frequency traces in time-frequency distribution

which are more continuous. Since the resulted beta rhythm was rather noisy,

the ALE was used to enhance it.
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Figure 4.3: Interhemisphere coherence of beta, alpha and theta rhythms, the top row
corresponds to the fatigue state and the bottom row corresponds to the alert state.

The results of the estimated coherence and phase synchronization values for

the two segments of the data are shown in Fig. 4.3 and Fig. 4.4. The algorithm

is repeated over more trials for alert and fatigue states. Approximately, in all of

the trials the coherence of beta rhythms between the left and right hemisphere

decreases and the coherencies for alpha and theta rhythms increase from the alert

to fatigue state. The estimated phase synchronization values between rhythms

have been shown to be different across different trials especially for theta rhythm.

However in most trials, the phase synchronization of beta rhythms decreases

while for alpha rhythms it increases from the alert to fatigue state.

In addition, we measured the phase synchronization and coherence around

stimulus onset before and during fatigue state. Since the segment of data around

stimulus onset is considered for measuring phase synchronization and coherence,

the length of the data segment is reduced to only one second before stimulus

onset and one second after stimulus onset. However for applying the EMD a

longer window size is considered while for measuring phase synchronization the

window size is reduced since the timing between the consecutive stimuli is very

short (from 1 second to 2 seconds).

We considered 3 seconds of the data segment after stimulus onset and applied

the EMD. For beta rhythm, ALE is applied to the resulted IMF. One second
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Figure 4.4: Interhemisphere phase synchronization of beta (left), alpha (middle), and
theta (right) rhythms.

of data segment before stimulus onset and one second after stimulus onset are

considered for measuring phase synchronization. Beta and theta rhythms are

extracted from F3 and F4 channel and alpha rhythm is extracted from C3 and

C4 channels. The phase synchronization is measured for five trials one second

before and after stimulus onset. The results are shown in Fig. 4.5. The aver-

aged phase synchronization is also depicted as the thick line. From these figures

it can be seen that the best discrimination is obtained considering phase syn-

chronization of the alpha rhythm. Also as the frequency of the rhythm decreases

(e.g. from beta to theta rhythm) the variance of the consecutive measured phase

synchronization across time increases. The coherence of beta, alpha, and theta

rhythms are measured around the stimulus onset for five trials and the averaged

coherence for all the rhythms are shown in Fig 4.6, Fig 4.7 and Fig 4.8.

It can be seen from these figures that there is not a good discrimination

in coherence before and during fatigue state. Therefore, considering the above

experiments, the window length size plays an important role. Reduced window

length size (e.g. one second) is not effective when measuring coherence. The best

discrimination with respect to phase synchronization is obtained for the alpha

rhythm. However all the phase synchronization measures can have an important

role for detecting the fatigue state. This can be done by selecting a regression or a

classification method and using the extracted phase synchronization in different

frequency bands from different regions of the brain. The coherence measure, if

included, should not be considered around the stimulus onset and the window

size should not be small (e.g. one second).

In the next section, a new method is developed for estimation and tracking

the IP of the EEG oscillations. This method is in the initial stage and should be

improved in the future to be applied for estimation of EEG phase synchronization

with application to mental fatigue analysis.
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Figure 4.5: Phase synchronization of beta (top), alpha (middle), and theta (bottom)
rhythms around stimulus onset.
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Figure 4.6: Coherence of alpha rhythm around stimulus onset for before fatigue (top
row) and during fatigue (bottom row). Dark blue colour presents lack of coherence and
dark red colour presents the maximum coherence.
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Figure 4.7: Coherence of beta rhythm around stimulus onset for before fatigue (top row)
and during fatigue (bottom row). Dark blue colour presents lack of coherence and dark
red colour presents the maximum coherence.
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Figure 4.8: Coherence of theta rhythm around stimulus onset for before fatigue (top
row) and during fatigue (bottom row). Dark blue colour presents lack of coherence and
dark red colour presents the maximum coherence.
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4.6 Instantaneous Phase Tracking of EEG Oscilla-

tions using EMD and RBPF

In this section, a new method for IP tracking of oscillatory signals in a narrow

band frequency range is proposed. EMD as an adaptive and data-driven method

for analysing non-linear and non-stationary time series, is applied to a mixture

of signals. Then, one of the resulted IMFs is used for estimating the IP of the

signal in a certain frequency band.

Since by applying EMD to the noisy signal, the noise is distributed over

the IMFs, the RBPF is used to track the actual IP of the noisy IMF. The

formulated RBPF operates based on smoothing the IF traces in Hilbert domain

and denoising the signal in time domain. Finally, the method is able to track the

IP across consecutive time points. The method is applied to both simulated and

real data. As an application, in future it can be used for mental fatigue analysis

based on the changes in phase synchronization of different brain rhythms in

different brain regions before and during the fatigue state.

Decomposition of signals into their constituent oscillatory components has

wide applications in various fields. This may be efficiently performed using EMD

and often to restore the resulted IMFs from noise. As stated in the first section

of this chapter, in some previous research conventional filtering is suggested for

removing the noise from the IMF which usually results in deteriorating the phase

information. In [94] a number of EMD-based denoising inspired by the standard

wavelet thresholding is proposed. In the previous section ALE was proposed

and applied to the IMF in order to enhance and de-noise it. HT is then used

for estimation of IP. In this section we propose a new method based on RBPF

in order to directly estimate the IP of the IMF. The method can be used as a

general de-noising algorithm but the focus in this section is to estimate the IP

from the noisy IMF. Since the algorithm requires setting a few parameters, for

measuring phase synchronization using the proposed method, the parameters

should be selected carefully.

EMD is applied to the EEG signal in order to extract its different oscillations.

Our proposed method in the first step uses the EMD in order to decompose

the EEG into the IMFs. The method tries to smooth the frequency traces

in Hilbert domain and estimate the phase. In the next subsections, first the

problem formulation using RBPF is provided and then the simulation and real

data results are presented.



4.6. INSTANTANEOUS PHASE TRACKING OF EEG OSCILLATIONS

USING EMD AND RBPF 39

4.6.1 Problem Formulation using RBPF

Suppose that EMD is applied to the mixture signal x to decompose it to its

corresponding IMFs. Then the HT is used to compute the analytic signal for

the IMFs (having the IMF as the real part and its HT as the imaginary part,

see equation (4.4)) as:

dt(i) + JHd[dt(i)] = at(i)e
Jθt(i) i = 1, ...,M (4.10)

where J =
√
−1 and at(i) and θt(i) are the IA and IP of the ith IMF respectively,

Hd[.] denotes the HT, and M is the number of IMFs. Then, the mixture signal

can be reconstructed as:

x(t) =
M∑

i=1

dt(i) = Real(
M∑

i=1

at(i)e
Jθt(i)) (4.11)

Now, it is possible to formulate the IA and IP of each IMF as the state variables

of the PF [83] and the mixture signal as the observation. Therefore, the state

transition and observation equations of the PF can be expressed as:

ρt = [θt(1) at(1) . . . θt(M) at(M)] (4.12)

ρt = f(ρt−1) + wt−1 (4.13)

x(t) = G(ρt) + vt (4.14)

where x(t) is the mixture signal, vt,wt−1 are WGN with known covariance ma-

trices Qv
t and Qw

t−1 respectively, M is the number of IMFs and

G(ρt) = Real(
M∑

i=1

at(i)e
Jθt(i)) (4.15)

From the above equations it can be seen that it is possible to partition the

state variables into linear and non-linear parts. Therefore, we formulate the

problem using the concept of RBPF [85]. The RBPF marginalizes out the linear

state variables in order to reduce the size of the state space. Therefore, a reduced

number of particles are required for the RBPF to achieve the same performance

as for the PF. We rewrite equation (4.12) as:

ρt = [ρ1
t ρ

2
t ] (4.16)

ρ
1
t = [θt(1) . . . θt(M)] (4.17)

ρ
1
t = [at(1) . . . at(M)] (4.18)
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where ρ
1
t is the non-linear state variable and ρ

2
t is the linear state variable.

Then, the state transition and observation equations can be written in the vector

form as:

ρt = f(ρt−1) + wt−1

x(t) = G(ρt) + vt

G(ρt) = ρ
2
tG

′(ρ1
t )

= [at(1) . . . at(M)]




Real(eJθt(1))

. . .

Real(eJθt(M))




(4.19)

ρ
2
t is estimated using KF [83] and ρ

1
t is estimated by PF. Considering the above

equations, if the state transition function f were available, it would be possi-

ble to track the IA and IP of each IMF and de-noise the mixture signal using

RBPF. However, the state transition function is not known and especially for

phase it cannot be modelled simply using a Markov process. Therefore, first we

utilize the RBPF in order to formulate the problem and then several equations

and constraints are employed to the RBPF algorithm in order to track the IP

effectively.

Here we focus on the phase tracking from one IMF. In future, the method

can be extended to track the IP and IA of multiple IMFs at each time point.

Suppose that we applied EMD to one channel of EEG signal as x(t). Usually

the first and second IMFs are noisy since they contain the highest frequency

available in the signal. If we compute the analytic signal using equation (4.10),

the IF of the IMF can be estimated using derivative of the phase (see equation

(4.5)). In the following it is shown that for the noisy IMF, the frequency trace

across time points is not smooth and the effect of wide band noise can be clearly

seen when there is a jump in the estimated IF of the time samples. We select

the ith IMF which is noisy. Therefore, the state variables, state transition, and

observation function can be considered as:

ρt(i) = [θt(i) at(i)], ρ
1
t (i) = θt(i), ρ

2
t (i) = at(i) (4.20)

ρt(i) = f̃(ρt−1(i)) + wt−1

imft(i) = G̃(ρt(i)) + vt

G̃(ρt(i)) = at(i)Real(e
Jθt(i))

(4.21)

Our proposed method tries to smooth the IF traces in Hilbert domain and then
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estimate the IP using the information provided by the IF. Each IMF belongs

to a specified frequency band. So, it is possible to determine the minimum and

maximum frequencies for the band in which IMF belongs to. By generating

some simulated signals, applying the EMD, and evaluating the IP of the IMF

using HT, it is evident that the phase sign suddenly changes across time points.

However, if we consider the absolute value of the phase, the phase change is not

significant. The IA is smooth across all time samples.

As shown in equation (4.20), we formulated the phase as the non-linear state

variable and the amplitude as the linear state variable of the RBPF. Both of

them are considered as the Markov process. We also save one variable as the

estimated IF. This variable does not have a direct role in estimating the phase,

however it is useful in updating the weight of some particles and deciding on

the phase transition. When we generate new particles corresponding to the

IP from the previous time point, we need to generate two phases. One phase

is obtained from the phase in the previous time sample plus the state noise.

Another phase is obtained from the negative of the phase in the previous time

sample plus noise. Then, we calculate IFs for both generated phases. We select

the generated phase in which the estimated IF smooths the frequency traces

across time samples (using the stored IF estimate in the previous time point).

When we tried to test and develop the method using simulated signal, there

was a situation that the phase in one time sample was close to zero and the

phase in the next time sample was also close to zero. In this case the calculated

frequency went out of the frequency range and became negative in the later

time samples. Although in consecutive time points, the IF traces return to the

actual track before becoming negative or going beyond the frequency range. In

this situation the method is not able to distinguish the correct generated phase

based on the frequency traces. We used some if-then-rules and detected the

situation that the estimated phase is close to zero. Therefore in that situation

the phase selection stems from considering the observation and the estimated

amplitude by KF.

Before deciding on the generated phase (from positive/negative of the phase

in previous time sample) we estimate the IA for both generated phases using

KF. We update the weight of each particle using two scales. One scale relates to

the frequency transition, the other scale relates to the weight given by using the

observation and the amplitude estimated by KF. In the case where the generated

frequency is out of band but still is a valid frequency and not related to noise

(i.e. due to the phase transition around zero), we estimate another frequency

from previous time point in order not to lose the frequency track.

Therefore, we cannot have an equivalent scale for frequency transition like



4.6. INSTANTANEOUS PHASE TRACKING OF EEG OSCILLATIONS

USING EMD AND RBPF 42

the case that frequency is inside the specific band. However, we set the second

scale equal to 1 to have better phase transition. Then, we select the generated

phase in which the estimated weight is higher. We do not store the generated

frequency which is negative or out of the frequency band. Instead, we generate

a new frequency which is equal to the stored frequency in the previous time

sample plus a Gaussian random generated number. In this case we do not lose

the frequency track inside the band in the later time points and have better

phase transition near zero.

In addition, our method involves some constraints. When the selected phase

is larger than π or smaller than −π the weight of the particle will be set to zero

in order not to have any contribution to the estimation of the posterior density.

In addition, when the estimated frequency is out of the frequency band range,

we set the weight of that particle to zero.

The pseudo-code of the proposed method for IP tracking of one IMF is shown

in Algorithm 4.1. τ is the threshold to determine when the phase transition is

near zero. In our simulation this was set to 0.15. We consider a window of

length T + 1 and apply the EMD. After one noisy IMF is selected, the HT is

applied to that IMF. We use the estimated IF, IP, and IA of the noisy IMF

at the first time point and initialize the particles. This initialization moves the

particles into the right part of posterior density and is helpful to speed up the

convergence of the RBPF. The method is applied to the rest of T time samples.
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Algorithm 4.1 Pseudo-code for phase tracking of one IMF

select ith IMF as dt(i), n = 1, ..., Ns, Nsis the number of particles.

set t = 0 and generate random numbers θ
(n)
0 ,freq

(n)
0

according to random uniform distribution considering the HT of the IMF.

Initialize σ, σ1, minf , maxf , Ts (Sampling period), τ

for {t = 1 to tmax} {tmax is the number of all time samples}
- generate random numbers w

ρ(n)1
t−1 ,w

ρ(n)2
t−1 and q

ρ(n)
t−1

- set θ̂
(n)
t = θ

(n)
t−1 + w

ρ(n)1
t−1

- set θ̆
(n)
t = −θ(n)

t−1 + w
ρ(n)2
t−1

- Calculate freq1 = diff (unwrap [θ
(n)
t−1 θ̂

(n)
t ])/Ts/(2 × π)

- Calculate freq2 = diff (unwrap [θ
(n)
t−1 θ̆

(n)
t ])/Ts/(2 × π)

- Estimate frequency freq = freq
(n)
t−1 + q

ρ(n)
t−1

- Set θ̂
(n)
t as the phase, estimate amplitude a

(n)1
t by Kalman filtering

- Set f1 = a
(n)1
t ×Real(eJθ̂

(n)
t ),

ws1 = exp (−(dt(i) − f1) × (dt(i) − f1)/(2 × σ2
1))

- Set θ̆
(n)
t as the phase, estimate amplitude a

(n)2
t by Kalman filtering

- Set f2 = a
(n)2
t ×Real(eJθ̆

(n)
t ),

ws2 = exp (−(dt(i) − f2) × (dt(i) − f2)/(2 × σ2
1))

- if (|θ̂(n)
t | < τ and |θ(n)

t−1| < τ) or (|θ̆(n)
t | < τ and |θ(n)

t−1| < τ)

weight1 = ws1, weight2 = ws2

freq1 = freq , freq2 = freq, ws1 = 1, ws2 = 1

- else

-weight1 = exp (−(freq − freq1) × (freq − freq1)/(2 × σ2))

-weight2 = exp (−(freq − freq2) × (freq − freq2)/(2 × σ2))

- end if

- if weight1 > weight2

θ
(n)
t = θ̂

(n)
t ,a

(n)
t = a

(n)1
t , freq

(n)
t = freq1, w

(n)
t = w

(n)
t−1 × ws1 × weight1

- else

θ
(n)
t = θ̆

(n)
t ,a

(n)
t = a

(n)2
t , freq

(n)
t = freq2, w

(n)
t = w

(n)
t−1 × ws2 × weight2

- end if

- if (θ
(n)
t > π) or (θ

(n)
t < −π) w

(n)
t = 0

- if (freq
(n)
t > maxf ) or (freq

(n)
t < minf ) w

(n)
t = 0

- Normalize particle weights w
(n)
t = w

(n)
t /

∑N
n=1(w

(n)
t )

- Resample

- end for
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4.6.2 Application

4.6.2.1 Simulated Results

Four frequency and amplitude modulated sine waves which belong to four differ-

ent frequency bands are generated and WGN is added to sum of the sine waves.

The available signal to noise power is measured by SNR in dB unit which is

defined as:

SNR = 10log10(
Psignal

Pnoise
) (4.22)

We generated two simulated signals in which the SNR for the first and second

signal obtained as 3.0445dB and 7.2167dB respectively. Next, the EMD method

is applied to decompose the generated signals into a number of IMFs. In both

simulated signals, the second IMF belonged to the frequency range around 20Hz.

Since, the resulted IMF was noisy, the proposed method in this section is applied

to the IMF in order to track the actual IP of the signal in the frequency range

around 20Hz.

We computed the IP, IA, and IF of the actual generated sine wave using HT.

Then, we compared the results of tracking the IP, IA, and IF using our method

with the results obtained by the HT applied to the noisy IMF. The results are

provided in Fig. 4.9 and Fig. 4.10. The mean square error (MSE) of the phase is

calculated using the following equation and is shown in Table 4.1 for both SNR

levels.

MSE = 1/T

T∑

t=1

(θestimate(t) − θactual(t))
2 (4.23)

where T is the number of time samples. It can be seen from Fig. 4.10 that

around the 10th time sample (the corresponding phase in Fig. 4.9 is around

0) the actual frequency decreases, becomes negative, and then it returns to the

previous track. However, our method can detect these changes in frequency

which is not related to the noise and smooths the frequency such that it does

not much affect the phase estimation. Therefore, in this case although we cannot

estimate the actual frequency we keep the frequency in a track that will not be

lost inside the specified frequency band and it can remove the wide-band noise

in other time points as well. In addition, since the estimated frequency does not

Table 4.1: MSE of the phase in two SNR levels.

SNR=3.0445dB SNR=7.2167dB

Proposed method 3.7634 2.6952

HT of the noisy IMF 5.7522 3.5871
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Figure 4.9: IP (top two rows) and IA (bottom two rows) estimation using the proposed
and HT methods in two SNR levels.

have direct impact on phase estimation, still the phase estimation around zero is

very promising. It can be seen from the figures that when the SNR is lower, the

error in estimation is higher. However the overall performance of the method

depends also on the operation of EMD.

4.6.2.2 Real Data Results

The real EEG data of a subject in a continuous visual experiment, explained

in Section 4.5.2, is used to apply the proposed phase tracking method. Using

lowpass interpolation algorithm the sampling frequency was increased to 200Hz.

The corresponding algorithm is explained in [95]. We selected the C3 channel

and applied the EMD algorithm. The first IMF belonging to beta frequency

range was selected and the method applied. The results are provided in Fig.

4.11 and Fig. 4.12.

Therefore, the new proposed phase tracking method uses the IMF given

by the EMD algorithm in order to remove the wide-band noise by applying

a constrained version of RBPF. As a result, the frequency traces of the IMF

become smoother and a better estimation for the IP is achieved. The proposed

method is very demanding in order to better estimate the IP of the beta rhythm

of the EEG signal, which is usually noisy and contains wide-band noise. The

changes in phase synchronization of beta rhythm among different brain regions
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Figure 4.10: IF estimation using the proposed (dotted line) and HT (bold red line)
methods in two SNR levels of 7.2dB (top) and 3dB (bottom).

before and during fatigue state, can play an important role in analysis of mental

fatigue. Another application of the method is in speech analysis. When the EMD

is applied to speech signals, the noise at each time point will be distributed to the

IMFs. Therefore, for enhancing several IMFs simultaneously and de-noising the

speech signal at each time point, the method should be extended and effectively

applied. Further, the method can be developed more in order to solve the mode

mixing problem in the EMD algorithm.

4.7 Conclusions

In this chapter a new approach for mental fatigue analysis is presented which

considers synchronization of brain lobes in different frequency bands. In order

to measure the synchronization, the EEG oscillations are extracted from the

EMD algorithm. Because often the first few extracted IMFs contain noise, it

is suggested to enhance the IMFs by using an ALE. By applying the proposed

method to the EEG data of a subject which goes under fatigue, changes in the

coherence and phase synchronization of the left and right brain hemispheres in

different frequency bands are detected.

In addition, a new method based on RBPF is proposed for IP estimation

of an oscillatory waveform. The proposed method can be used for measuring

phase synchronization of two oscillations in mental fatigue analysis. However

since the method uses RBPF and several constraints and parameters, there is

a need for optimal selection of the parameters. Therefore, the method needs to

be improved in future for more reliable analysis of mental fatigue based on the

changes in the estimated phase synchronization. In the next two chapters, two
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Figure 4.11: IP (tow row) and IA (bottom row) estimation of C3 channel using the
proposed method.

0 20 40 60 80 100
0

20

40

60

Time [Sample]

F
re

q
u

e
n

c
y
 [

H
z
]

Instantaneous frequency [IF] estimation of C3 channel

 

 

IF of the noisy IMF

IF smoothing using RBPF

Figure 4.12: IF estimation of C3 channel using the proposed method.

new methods for ERP tracking and detection are proposed. The first method

exploits the RBPF and tracks the temporal changes of P300 subcomponents

and in the second method a new spatio-temporal filtering method is proposed

for estimation of the ERP subcomponents.



Chapter 5

Coupled RBPF for Single Trial

Estimation of ERPs in

Temporal Domain with

Application to Mental Fatigue

5.1 Introduction

In this chapter a new method for investigating mental fatigue based on P300

variability is presented. Based on this approach a new coupled PF for tracking

variability of P300 subcomponents i.e. P3a and P3b, is developed for single trial

recordings. Some research has been carried out using BSS and PCA for decom-

position of P300 into its subcomponents [69, 75, 76, 77, 78]. In some studies

PCA has been applied to the averaged ERP [79, 80, 81]. The PCA method

used in these studies is suitable for stationary data disregarding their trial-to-

trial variations. The major problem with these methods is that when there is a

high temporal correlation between the subcomponents, low signal to noise ratio

ERPs, or correlated noise, they may fail to produce correct results. In some

cases they are able to estimate only one of the subcomponents. A recent work

for single trial estimation of ERP components in [68] formulates wavelet coeffi-

cients of the time-locked measured ERPs in the state space and then estimates

the ERP components using PF. It is shown that the formulated PF outper-

forms KF. The method however fails to estimate ERP subcomponents (such as

P300 subcomponents). Therefore, a new modelling of ERP subcomponents is

demanded.

48
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In this chapter we propose a method based on RBPF [85] to track the dy-

namic changes of the amplitude, latency, and shape of P300 subcomponents

across trials. The proposed method considers the temporal correlation between

P300 subcomponents recorded from different sites of the brain and enables sep-

aration and identification of the subcomponents. The latency, amplitude, and

width of each subcomponent, as the main varying parameters, are modelled us-

ing state space systems. In this model the observation is modelled as a linear

function of amplitude and a non-linear function of latency and width. Because

of uncertainty in the estimation and tracking, two RBPFs are coupled and em-

ployed for recursive estimation of the system state across trials. By including

some physiological based constraints, the proposed technique prevents genera-

tion of invalid particles during estimation of the state.

The main advantage of the algorithm compared with other single trial based

methods is its robustness to low signal-to-noise ratios and temporal correlation

between the P300 subcomponents. The method is applied to both simulated data

and real mental fatigue data to track subtle changes of the P300 subcomponents

before and during fatigue state. The results demonstrate potential use of the

method in ERP based applications.

Some preliminary results of the method have been presented in [96]. The

method presented in this chapter can be considered as an extension of our pre-

vious work in [97], in which a constrained PF was employed for separation and

tracking the P300 subcomponents from only a single channel.

The designed coupled RBPF (CRBPF) has shown to be helpful and effective

in single trial estimation of P300 subcomponents and it can be employed for

single trial estimation of any other ERP subcomponents using the corresponding

physiological based constraints. The concept of the designed CRBPF is novel

and it is expected to be used in some applications where synchronous tracking

of states of two dependent systems is required.

The remainder of this chapter is structured as follows. In Section 5.2, a PF

formulation is developed for estimation of ERP subcomponents from single trial

EEG signals. Then, in Section 5.3, the CRBPF is proposed to track variations

of P300 subcomponent across different single trials. In Section 5.4 the method

is first applied to simulated data and then it is applied to real mental fatigue

data. Finally, Section 5.5 concludes the chapter.
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5.2 Problem Formulation using PF

In order to track the variations of P3a and P3b parameters within consecutive

time-locked trials of stimulated EEGs, PF can be effectively used. Since the aim

is to track the latency, amplitude, and width of the ERP subcomponents across

trials, the state vector of the PF can be formed as:

xk = [ak(1) bk(1) sk(1) . . . ak(p) bk(p) sk(p)]
T (5.1)

where ak(i) is the amplitude, bk(i) is the latency, and sk(i) is the width of the ith,

i = 1, ..., p, subcomponent in the kth trial, and p is the number of subcomponents.

Based on the above definitions the state transition and observation equations are

expressed as:

xk = xk−1 + nk−1 (5.2)

zk = f(t;xk) + vk (5.3)

where zk is the time-locked single trial measurement and

f(t;xk) = f(t;ak,bk, sk) =

p∑

i=1

ak(i)e
−

(t−bk(i))2

2s2
k
(i) for i = 1, ..., p (5.4)

Here t denotes the time index and varies from the beginning of the ERP com-

ponent to the end of ERP component. The whole time samples in a vector

format [f(1;xk) ... f(T;xk)] are used in the observation equation. Based on this

model, each ERP component is modelled as sum of its subcomponents and each

subcomponent is approximated by a Gaussian waveform.

In many studies (e.g. see [98, 99]) P300 subcomponents are modelled using

parametric functions. Among them Gaussian waveform is the most commonly

used type for modelling such subcomponents [82]. Although the actual ERP

subcomponents are not necessarily exactly Gaussian waveforms but modelling

them as Gaussians leads to a robust and fast estimation of the peak parameters

(latency and amplitude). This is what neurophysiologists and cognitive scientists

are primarily concerned with.

Using the concept of PF, the available measurements for tracking variabil-

ity of ERP subcomponents are time-locked single trials. The aim of tracking

is to recursively estimate the state of the system which contains the latency,

amplitude, and width of each ERP subcomponent.
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5.3 Coupled RBPF Formulation

The objective here is to incorporate the topographic information of P3a and

P3b (locations) into the detection and tracking algorithm which can interlink

two trackers corresponding to P3a and P3b to work together. In this section the

problem of tracking ERP subcomponents using RBPF from a single channel is

formulated first and then the required conditions and measures for coupling two

RBPFs, in order to track P300 subcomponents, are described.

It can be seen from equation (5.4) that each ERP component is modelled

as sum of several Gaussian waveforms representing its subcomponents. It is

possible to factorize the observation model into amplitude information (as the

linear part) and exponentially varied waves (as the non-linear part). In this case

a linear relation between the observation and the vector of amplitudes has been

made while there is generally a non-linear relation with respect to other state

variables.

Regarding equations (5.1)–(5.4) and using the concept of RBPF, the state-

space and observation can be formulated respectively as:

x1
k = [bk(1) sk(1) . . . bk(p) sk(p)]

T (5.5)

x2
k = [ak(1) . . . ak(p)]

T (5.6)

zk = [f1(t;x
1
k) . . . fp(t;x

1
k)][ak(1) . . . ak(p)]

T + vk (5.7)

where as in (5.4)

fi(t;x
1
k) = fi(t; bk(i), sk(i)) = e

−
(t−bk(i))2

2s2
k
(i) for i = 1, ..., p (5.8)

According to the concept of RBPF, the state vector is partitioned into the vectors

of linear and non-linear variables. Based on equations (5.5) and (5.6), x1
k is

the non-linear state vector which contains non-linear variables and x2
k is the

linear state vector which contains the linear variables. Comparing the above

equations with equations (3.20), (3.21) and (3.22), it is evident that Ck(x
1
k) (in

equation (3.22)) is modelled as the matrix of exponentials fi(t; bk(i), sk(i)) which

contains the non-linear state variables (latency and width). Also for simplicity

Bk−1(x
1
k−1) (in equation (3.21)) is selected as the unitary matrix. In this case the

state transition for the linear state variables is independent from the non-linear

state variables.

It is possible to apply the RBPF to the single channel of the time-locked mea-

sured ERPs in order to track the dynamic changes in latency, amplitude, and

width of ERP subcomponents. In the initialization stage, instead of generating
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random particles, we can use the averaged ERP of several consecutive trials and

generate some particles which contribute more to the posterior density. In the

subsequent trials, due to the existence of noise and artefact in the data, the

correct track of ERP subcomponent parameters may be lost. The use of some

physiological constraints on the state variables can be helpful in order to remove

the particles which are invalid while they have contribution to the estimation of

posterior density. The constraints can be set using the prior knowledge about the

ERP subcomponent specifications. In addition, it is possible to apply the track-

ing procedure to more channels and impose more meaningful constraints. Here,

we have designed the CRBPF for tracking the variability of P300 subcompo-

nents from two channels. The subcomponents (P3a and P3b) can be considered

spatially disjoint, however they usually overlap temporally on the scalp [22].

As we mentioned in Chapter 2, Section 2.2.1, P3a is located more towards

the frontal site while P3b is located more towards the parietal part of the brain.

Hence, P3a has larger amplitude over the frontal electrodes and P3b has larger

amplitude over the parietal electrodes. In addition, the electrodes on midline

are found to be more effective in detection of P300 [22]. We then select Fz

electrode in the frontal and Pz electrode in the parietal site. Two RBPFs are

formulated. The first one (RBPF1) is applied to the Fz channel while the second

one (RBPF2) is applied to the Pz channel. Since the aim is to track the two

P300 subcomponents from two channels, for simplicity of notation we rewrite

the equations for the state variables of RBPF1 and RBPF2 as follows:

x1
k = ρ

i
k = [bik si

k b̃ik s̃i
k]

T (5.9)

and

x2
k = ai

k = [ai
k ãi

k]
T (5.10)

Therefore, the state equations become:

ρ
i
k = ρ

i
k−1 + w

ρi
k−1

ai
k = ai

k−1 + wai
k−1

(5.11)

where i = 1, 2 refers to RBPF1 and RBPF2 respectively and w
ρi
k−1 and wai

k−1

are zero mean WGN noises with known covariance matrices Q
w(ρi)
k−1 and Q

w(ai)
k−1

respectively. In equation (5.9) bik and si
k are respectively the latency and width

of P3a in the kth trial of ith RBPF and b̃ik and s̃i
k are respectively the latency

and width of P3b in the kth trial of ith RBPF. In equation (5.10) ai
k and ãi

k are

the amplitudes of P3a and P3b in the kth trial of ith RBPF.



5.3. COUPLED RBPF FORMULATION 53

Tracking two temporally correlated P300 subcomponents from a single chan-

nel is not always accurate. Since in the formulation using only one RBPF, sum

of two Gaussians and noise is considered, the RBPF tracks the changes of Gaus-

sian parameters across trials. The correct tracking trajectory can be lost because

of a sudden change in any one of the parameters of the Gaussians. Therefore,

tracking using two channels is expected to be more accurate. By considering

the relation between the two RBPFs, it is possible to prevent deviation of the

estimation from the actual values. In order to make a connection between the

two RBPFs, we assume that the original shapes of P3a and P3b sources are the

same at Fz and Pz channels and only the amplitudes can be different. This as-

sumption may not be exactly true in real applications, but it helps to couple the

two RBPFs in order to simultaneously track the changes in a system where there

is an uncertainty in the signal specifications as a result of very low amplitude

of the signal. Therefore, the benefit of simultaneous tracking is to reduce the

uncertainty in the system by considering some meaningful constraints.

In addition, we incorporate a small difference in the latencies of P3a and P3b

at Fz and Pz channels in our estimation. In the initialization stage, considering

the averaged ERP, we generate a rather large number of particles according to the

uniform distribution with relatively large variances for the latency, amplitude,

and width. These initial particles are the same for RBPF1 and RBPF2. In the

subsequent trials, the particles with small weights are replaced by the particles

with large weights.

In each trial, the required relation between the two RBPFs should be taken

into account for drawing samples from the prior density. As long as we assume

that the shapes of P3a or P3b are the same for Fz and Pz channels, we can

couple the pairs of particles with the same width for P3a and P3b. The basis

of the designed CRBPF is in coupling particle pairs. In Fig. 5.1 one pair of

particles has been shown.

Initialization of the particles for RBPF1 and RBPF2 is the same mainly be-

cause we want to have particle pairs. In particle pairs the width is the same for

P3a in RBPF1 and RBPF2, and also the same for P3b in RBPF1 and RBPF2.

Therefore, in each trial it is sufficient to assign the same width for each sub-

component in both RBPFs. However the amplitudes of the subcomponents are

different and the latencies differ in small delay. The width and latency values

of the subcomponents can be drawn from the prior density. Then, KF can be

applied for estimation of amplitudes of the subcomponents.

In this stage, some invalid particles may be generated. It is effective to detect

these particles and remove them by setting their weights to zero. Therefore,

invalid particles do not have any contribution in the estimation of the system
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Figure 5.1: The latency, amplitude, and width of the simulated P3a and P3b at Fz are
used as the states of RBPF1 and at Pz as the states of RBPF2. Each particle pair has
the same width value for P3a at Fz and Pz channels, and has the same width value for
P3b at Fz and Pz channels.

state. One type of invalid particles is the one for which the estimated amplitude

of P3a at Pz channel is larger than the amplitude of P3a at Fz channel. Also,

the particles for which the estimated amplitude of P3b at Fz channel is larger

than the amplitude of P3b at Pz channel are considered invalid.

Usually P3a and P3b overlap over the scalp but P3a has a relatively shorter

latency than P3b, therefore, it is possible to have P3a and P3b latencies close

to each other. This can cause displacement of generated latencies for P3a and

P3b in a particle. The particles in which the latency of P3b is shorter than the

latency of P3a are marked invalid. The weight of all the invalid particles are set

to zero. The particle weights are then normalized separately. If the weight of

one particle is high and the weight of its pair is low or vice versa, we need to

decrease the weight of both particle pairs. Because the two RBPFs are working

together, an effective particle pair is the one in which both particles have high

weights. So, if one of the pairs has a low weight we decrease the weight of both

particle pairs.

Therefore, it is possible to update the weights of both particle pairs by in-

corporating a variable in order to have a better estimation for the width value.

Then, for the resampling, we can use a weight that is the scaled weight of both

particle pairs. The pseudo-code of the CRBPF is shown in Algorithm 5.1. In this

algorithm the optimal values for λ′ and λ can be obtained using some optimiza-

tion methods. However, we set λ′ to 1 and λ to 0.5 empirically and found them

satisfactory in our application based on the simulated data. The important issue

is the impact of these variables for better estimation of the weights of particle

pairs. τ is the difference between the latencies of P3a for RBPF1 and RBPF2.

In the same way, τ̃ is the difference between the latencies of P3b for RBPF1 and
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RBPF2. Next, we apply the proposed coupled RBPF to both simulated and real

EEG data.

Algorithm 5.1 Pseudo-code for CRBPF

set k = 0 and generate random numbers ρ
(n)1
0 ,ρ

(n)2
0 according to random

uniform distribution considering the averaged ERP.

n = 1, ..., Ns, Ns is the number of particles.

i = 1, 2 denotes RBPF1 and RBPF2 respectively.

set µ
a(n)1
k = 0, P

a(n)1
k = I, µ

a(n)2
k = 0 and P

a(n)2
k = I

for {k = 1 to kmax} {kmax is the number of trials}

- generate random numbers w
ρ(n)1
k−1 and w

ρ(n)2
k−1

- set ρ
(n)1
k = ρ

(n)1
k−1 + w

ρ(n)1
k−1 and ρ

(n)2
k = ρ

(n)2
k−1 + w

ρ(n)2
k−1 which satisfy the

following constraints:

- s
(n)1
k = s

(n)2
k , s̃

(n)1
k = s̃

(n)2
k , |b(n)1

k − b
(n)2
k | ≤ τ , |̃b(n)1

k − b̃
(n)2
k | ≤ τ̃

- update µ
a(n)1
k , µ

a(n)2
k , P

a(n)1
k and P

a(n)2
k for each particle using

equations (3.24)-(3.28)

- calculate the weight of each particle using equation (3.18)

- if µ
a(n)1
k < µ

a(n)2
k or µ

ã(n)1
k > µ

ã(n)2
k or b

(n)1
k > b̃

(n)1
k or b

(n)2
k > b̃

(n)2
k

- set w
(n)1
k = 0 and w

(n)2
k = 0

- end if

- normalize the weights w
(n)1
k = w

(n)1
k /

∑N
n=1w

(n)1
k and w

(n)2
k = w

(n)2
k /

∑N
n=1w

(n)2
k

- set α(n) = 1 − |w(n)1
k − w

(n)2
k |

- update both weights of RBPF1 and RBPF2

- set w
(n)1
k = w

(n)1
k × α(n) × λ′

- set w
(n)2
k = w

(n)2
k × α(n) × λ′

- Resample particles of RBPF1 and RBPF2 using the scaled weight

- set w
(n)
k = λ×w

(n)1
k + (1 − λ) × w

(n)2
k

end for
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5.4 Experimental Results

In this section, first, two sets of simulated signals are generated and the CRBPF

is applied to show the capability of the method for tracking the parameters of

ERP subcomponents. Then, the method is applied to real mental fatigue data

and the corresponding results are provided.

5.4.1 Simulated Data

In order to evaluate the method and quantify the detection error the method

is applied to some simulated data. In the first set of simulated signals two

Gaussian-shape waves representing P3a and P3b are generated. The state vari-

ables are latencies, amplitudes, and widths of the Gaussian waves. The uniform

distribution is used in order to generate the new state variables from the previous

trials. The observations are generated using the corresponding state variables.

These state variables share the same width value for the first and second sub-

components. The generated observations satisfy the required constraints for the

latency and amplitude of the P300 subcomponents as explained in Section 5.3.

This provides a realistic situation for application of the system.

As for real EEG, for the simulated signals the latency of P3a is smaller than

the latency of P3b, the amplitude of P3a in the first signal is larger than that of

the second signal, and the amplitude of P3b in the second signal is larger than

that of the first signal. The noise variance for the latency is 3, for the amplitude

is 0.1, and for the width is 1. In each trial the clean observations, which are sum

of two Gaussians, are added with a random noise of 0.3 variance. The simulated

signals contain 30 trials.

After generating these signals, CRBPF is applied to estimate and track the

simulated P300 subcomponents. In Fig. 5.2 the results of tracking of latencies

(Fig. 5.2(a,c)), amplitudes (Fig. 5.2(b,d)), and widths (Fig. 5.2(e,f,g,h)) of the

generated Gaussians for the first and second RBPF are shown.

Here, the number of particles is set to 10000. If we used PF instead of RBPF,

it would be necessary to increase the number of particles. Increasing the number

of particles does not necessarily increase the performance of the estimator since

there maybe a sudden change in one or more than one of the state variables.

By reducing the dimension of the state space and applying RBPF, the same or

better performance will be obtained in comparison with PF. In addition, the

proposed method involves several constraints which should be checked for each

particle. Therefore, the computation time is reduced when RBPF is used.

The rate of invalid particles varied in different trials. In average, 10% of the
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Figure 5.2: Tracking the latency, amplitude, and width of simulated P3a and P3b on
channels Fz (a,b,e,f) and Pz (c,d,g,h) using CRBPF; the thick line connects the actual
values while the dotted line is the result of estimation and tracking using CRBPF.
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particles marked invalid in each trial. The average computational time for exe-

cution of CRBPF in each trial was about 0.7533 of a second (using Pentium(R)

4 CPU 3.00GHz, 3.00 GB of RAM).

The available SNR is measured in dB unit and defined as:

SNR = 10log10(
Psignal

Pnoise
) (5.12)

The MSE is defined as:

MSE =
1

N

N∑

i=1

(zact(i) − zest(i))
2 (5.13)

where zact is the original clean observation, zest is the estimated observation,

and N is the number of time samples. It can be seen from Fig. 5.2(e,g) that the

same width is estimated for P3a at Fz and Pz channels. The same width is also

estimated for P3b at Fz and Pz channels (see Fig. 5.2(f,h)). In the first 10 trials,

since the filter has not converged, the latency and amplitude estimations, as in

Fig. 5.2(a,c,b,d) are not accurate enough. In the subsequent trials the CRBPF

converges and has clearly better estimation.

In the last few trials, however, some deviations in the estimation of ERP

subcomponent parameters can be seen. This is due to the fact that in each trial,

the amplitudes, latencies, and widths, as the states, are generated randomly,

and the SNR values are also small. In Fig. 5.3 the calculated MSE and SNR

of each trial are shown for Fz and Pz channels in the top and bottom rows. It

can be seen from Fig. 5.3(d) that SNR value for the signal in channel Pz is

close to 1 and decreases slightly in the later trials. Therefore, in some trials the

exact track is lost because of low SNR. Similar to the first trials, however, as the

iterations continue, the estimated values are expected to converge to the actual

values again.

It can be seen from Fig. 5.3 that the SNR values are moderate in most of

realistic situations. On the other hand, the calculated MSE is very low and the

tracking is towards the actual values. Although the exact track may be lost in

some trials due to the low SNR or sudden change in one of the variables, we

still have a very good estimation for the parameters. The important issue is the

trend for variations of the parameters which is mostly preserved even after de-

viation from the actual values. The trend of variations is especially useful when

the SNR is negative in which almost all methods fail. However the advantage

of tracking across trials is that instead of direct estimation of the parameters,

the information from previous trials are taken into account. Therefore, using
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Figure 5.3: The corresponding MSE, (a) and (c), and SNR, (b) and (d), calculated in
different trials for the simulated data for Fz (top) and Pz (bottom) channels.

a tracking based system such as CRBPF, the trends for variations of the pa-

rameters will reveal important information such as increase or decrease of the

parameter values across trials. In order to see how the CRBPF works in very

low SNRs, in the second simulated signals negative SNRs are also considered.

Effect of Mismatch

In the first set of simulated signals the generated P3a and P3b were exact Gaus-

sian waveforms. However in the real case P3a and P3b may not be exactly

Gaussians. Therefore, in the second set of simulated signals we modelled the

P3a and P3b as another waveform to better generalize application of the method.

Gamma waveform defined as:

r(t) = ctk−1exp(− t

θ
) (5.14)

where k > 0 is a shape parameter, θ > 0 is a scale parameter, and c is a

normalizing constant, is used as an appropriate alternative. The Gamma waves

for P3a and P3b are shown in Fig. 5.4. In this figure k = 3 and θ = 17 are used

for generating both Gamma waves. In this experiment 30 trials are generated.

The noise variance for the latency is 3 and for the amplitude is 0.1.
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Figure 5.4: Two Gamma waves are used for modelling P3a and P3b. Different Gaussians
approximating Gamma waves are also shown.

In each trial, the clean observations which are sum of two Gamma waves as

shown in Fig. 5.4 are added with a random noise of variance 0.3. The shape

of Gamma waveforms remains the same across all the trials. The aim of this

experiment is to verify whether the CRBPF is able to work in the case of having

other shapes rather than Gaussians for the original P3a and P3b signals. The

experiment is repeated two times and the results of tracking the latency and

amplitude variations of P3a and P3b at Fz and Pz channels are shown in Fig.

5.5 and Fig. 5.6. Also, in these figures the MSE and SNR are shown in each

trial for each channel.

In Fig. 5.5(a) and Fig. 5.5(e) latency variations of P300 subcomponents

(P3a and P3b) at Fz and Pz channels are shown respectively. In the last trials

a bias in latency estimation for P3b can be seen. However, from Fig. 5.5(d) and

Fig. 5.5(h), it can be seen that the SNR values in the last trials are very low. In

Fig. 5.5(b) and Fig. 5.5(f) the amplitude variations for the P300 subcomponents

(P3a and P3b) at Fz and Pz channels are shown respectively. From these figures

the total variability of the amplitudes are preserved while there are some error

in estimation.

In addition, since the estimated P300 signal is based on the Gaussian as-

sumption of the P3a and P3b while the actual P3a and P3b are Gamma waves,

it can be seen that the calculated MSE in each trial for Fz and Pz channels

shown in Fig. 5.5(c) and Fig. 5.5(g) are high. The estimated width for P3a and

P3b had some fluctuations at the initial trials but they remained constant over

time. The estimated width corresponds to the width of Gaussian waveform. This

however, may not refer to the width of a Gamma wave. The important point

is that we kept the width of Gamma waves the same across different trials and

the estimated width remained constant after the first few trials. The estimated
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Figure 5.5: The dotted lines are the results of tracking using CRBPF, (a) latency
variations of P3a (red line) and P3b (Blue line) on channel Fz, (b) amplitude variations
of P3a (red line) and P3b (Blue line) on channel Fz, (c) MSE obtained at each trial for
channel Fz, (d) calculated SNR at each trial for channel Fz, (e) latency variations of
P3a (red line) and P3b (Blue line) on channel Pz, (f) amplitude variations of P3a (red
line) and P3b (Blue line) on channel Pz, (g) MSE obtained at each trial for channel Pz,
and (h) calculated SNR at each trial for channel Pz.
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width for each of Gamma-based P3a and P3b relates to the width of a Gaussian

that can best approximate them.

Therefore, based on the results of this experiment, in the case of Gamma

waveforms for P3a and P3b and despite very low SNRs, the CRPBF can still

track inter-trial variabilities of the P3a and P3b parameters with very good

approximations. This conclusion has been verified by repetition of the experi-

ment as shown in Fig. 5.6. In this figure the results of tracking P3a and P3b

amplitudes and latencies at Fz and Pz channels are shown (Fig. 5.6(a,b,e,f)).

The SNR and MSE in each trial for Fz and Pz channels are also shown (Fig.

5.6(c,d,g,h)). In this figure, the SNR value is very low in most of the trials

and the actual generated signals for P3a and P3b are Gamma waveforms. The

CRBPF nevertheless, is still able to track the inter-trial variabilities of the P3a

and P3b.

5.4.2 Real Data

The description of the real data is explained in Section 4.5.2. EEG data of

one of the subjects was selected. Using interpolation the sampling frequency

was increased to 1000Hz in order to increase the temporal resolution. So, for

example, a shift of less than 0.01 second in latency can be tracked. Previously,

this data set was being used for P300 detection by the averaging method [92].

The CRBPF was applied to Fz and Pz channels considering 50 trials from

the first and fourth half an hour. In the first half an hour the subject was not

under fatigue while in the fourth half an hour the subject was under fatigue. In

both cases, before and during fatigue, the averaged ERP of 20 trials was used

to initialize the particles of the CRBPF.

The results of tracking P3a and P3b variability are shown in Fig. 5.7. This

figure illustrates the variability of P3a and P3a amplitudes (Fig. 5.7(c,d,g,h)),

latencies (Fig. 5.7(a,b,e,f)), and widths (Fig. 5.7(i,j,k,l)) before and during

fatigue state. Based on the results it is possible to draw some conclusions about

the effect of mental fatigue on P300. Generally in the previous researches on

mental fatigue [70, 71, 72, 73, 74], the decrease in the overall P300 amplitude

and increase in its latency have been reported. But, using our method we could

separate P300 into its constituent subcomponents and evaluate the effect on each

subcomponent separately. Based on the results it is concluded that the latencies

of both P3a and P3b increase with time on task interval. During the fatigue

state the increase of the latency of P3a is slightly more than that for the P3b.

Indeed, the amplitude of P3a decreases with fatigue more than that of the P3b.

The width of P3b remains approximately constant in the fatigue state while the

width of P3a decreases.
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Figure 5.6: The dotted lines are the results of tracking using CRBPF, (a) latency
variations of P3a (red line) and P3b (Blue line) on channel Fz, (b) amplitude variations
of P3a (red line) and P3b (Blue line) on channel Fz, (c) MSE obtained at each trial for
channel Fz, (d) calculated SNR at each trial for channel Fz, (e) latency variations of
P3a (red line) and P3b (Blue line) on channel Pz, (f) amplitude variations of P3a (red
line) and P3b (Blue line) on channel Pz, (g) MSE obtained at each trial for channel Pz,
and (h) calculated SNR at each trial for channel Pz.
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Figure 5.7: Tracking variability of P3a and P3b before and during fatigue; the left
column corresponds to the before fatigue state (a,c,e,g,i,k) while the right column to the
during fatigue state (b,d,f,h,j,l).



5.5. CONCLUSIONS 65

The P3a amplitude seems to become smaller with time on the task, while

that of the P3b seems to increase somewhat. During the first half an hour a

clear difference between the P3a and P3b locations over scalp is observed. P3a

is more prominent at Fz as expected. During the last half an hour the P3a

became very small at Pz while the P3b was prominent at this position. P3a is

related to novelty. It is possible however that the decrease in the P3a amplitude

with time on the task is related to practice on or habituation to the task.

Therefore, mental fatigue can be related to increase in the P3a and P3b

latencies, and decrease in the P3a amplitude and width. Using the results of

this research the amplitude and width of P3a and latencies of P3a and P3b,

obtained by applying CRBPF, can be considered as useful features for detec-

tion of fatigue state. However, these features are not enough for distinguishing

between the different mental states and alarming the fatigue state. In future

studies a comprehensive analysis of mental fatigue can be performed by combi-

nation of these extracted features along with other useful features, from different

ERP components and subcomponents and the background EEG, and then giving

them as an input to a classifier in order to classify different mental states. In

addition, it is possible to use all the features obtained by applying the proposed

CRBPF in this chapter including latency, amplitude, and width of both P3a and

P3b. Then, an appropriate feature selection method can be used to mark and

remove the useless features.

5.5 Conclusions

In this chapter a new method is proposed to separate and track variability of

P300 subcomponents in different single trials. The method has been applied to

investigate mental fatigue. The coupled PF proposed in this chapter uses the

concept of RBPF, combines two RBPFs, and imposes some constraints on the

state variables to have a more reliable estimation and to use the required number

of particles effectively. The particle initialization with the help of averaged ERP

is useful to move the particles towards the right part of the posterior density.

Therefore, the algorithm is capable of estimating P300 component and its sub-

components P3a and P3b in single trials. Here, for the first time, all variations

of the P300 subcomponents (P3a and P3b) including latency, amplitude, and

width, have been considered from single trials and applied to the mental fatigue.

It is known that P3a is an attention related subcomponent and P3b is a memory

related subcomponent [22]. Therefore, during the fatigue state the attention to

the stimuli decreases more than the memory engagement with the stimuli.
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This single trial estimation can reveal important information about the vari-

ability of P300 subcomponents which cannot be achieved by detection of aver-

aged P300 as in previous researches whereby the variability of the subcomponents

is ignored. Therefore, this new single trial estimation of ERP subcomponents

has shown to be favourably effective in mental fatigue analysis. In addition, the

designed coupled RBPF is able to synchronously and simultaneously character-

ize two dependent systems and therefore can be applicable for monitoring many

natural systems.

Although the proposed method is based on fitting Gaussians to ERP signals

and using application specific constraints, the risk of generating responses that

do not exist in the data is avoided by particle initialization using the averaged

ERP and especially by coupling the two measurement channels. The coupling

is possible since the P3a and P3b are expected to be statistically dependent

(e.g. temporal order, correlated amplitudes, etc). Using prior knowledge about

other ERP subcomponents, it is possible to use the method with appropriate

constraints. In addition, the method can be combined with beamforming algo-

rithms to introduce a spatio-temporal approach for analysis of ERP subcompo-

nents. The results achieved in this work are inline with clinical expectations.

They also verify previous reported outcomes by [70, 71, 72, 73, 74]. However,

the method has the ability to give more insight about the relative changes of

P300 subcomponents. The method presented in this chapter is useful for tem-

poral estimation of ERP subcomponents. In the next chapter, a new single trial

estimation method is proposed for spatio-temporal estimation of ERP subcom-

ponents.



Chapter 6

Spatio-temporal Filtering

Method for Single Trial

Estimation of Correlated ERP

Subcomponents

6.1 Introduction

In the previous chapter a method based on PF was proposed for tracking variabil-

ity of ERP subcomponents from two channels. The method only considers the

temporal variations of the ERP subcomponents across different trials whereas the

spatial relationships are ignored. Therefore, a new method for spatio-temporal

estimation of ERP subcomponents is demanded.

In this chapter a novel spatio-temporal filtering method is proposed for sin-

gle trial estimation of ERP subcomponents which can be mutually correlated.

The method can be specifically used for spatio-temporal estimation of P300 sub-

components (e.g. P3a and P3b). These subcomponents can be generated in

an oddball paradigm considering the target stimuli. It is hypothesized that the

discrimination between target and standard stimuli initiates the frontal lobe ac-

tivity that engages the attention focus demanded by the task performance [100].

P3a is supposed to be related to the neural changes in the anterior cingulate when

the incoming stimuli replace the contents of working memory [101]. P3b is then

generated from memory storage operations that are initiated in the hippocampal

formation in which the update output is transmitted to the parietal cortex [102].

Therefore, the P3a is generated when a demanding stimuli commands frontal

lobe attention and subsequently P3b is generated when the required attention

67
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resources are allocated for memory updating in association cortex. Based on

this model, the P300 component generation is due to the interaction between

frontal lobe and hippocampal/temporal-parietal function. Although the exact

neural origins of P3a and P3b are distinct, the generation of these subcompo-

nents involve interactions between them and as the result engages overlapping

neural activations [100]. Based on this, these subcomponents are correlated.

Throughout this study, the correlation of ERPs in temporal or spatial domain is

considered as the overlap in time or space domain which can be seen from statis-

tical point of view of the scalp projections and time domain series of the ERPs.

However, in general the overlap is the sign of neural generation/interactions of

the ERP components/subcomponents.

Recently a method for spatio-temporal estimation of ERP components has

been developed [103]. The advantage of this method is that instead of modelling

the whole ERP component, it models its descriptors (amplitude and latency)

based on the spatial diversity of multi-channel recordings and a user defined

template. This method has shown to be effective in ERP component estimation

even in negative SNRs. However, although this method can be used for single

trial estimation of ERP components, it is not suitable for estimation of the ERP

subcomponents particularly when they overlap in time.

Hence, in the case of having correlated components or subcomponents the

method cannot achieve correct results. Therefore, in this chapter we have signif-

icantly improved the method presented in [103] by developing a spatio-temporal

filtering method for single trial estimation of correlated ERP subcomponents. In

[82] a spatial notch filter is used to localize the ERP subcomponents in the brain.

In this approach the correlation between the desired component and the back-

ground EEG has been considered. In our proposed method for spatio-temporal

estimation of the ERP subcomponent descriptors two cost functions are defined

first. Following that, the latencies, amplitudes, and scalp projections of both

subcomponents are estimated. Each cost function can deflate one of the corre-

lated subcomponents and estimate the other one. In general, the subcomponents

are considered to be temporally/spatially correlated.

It is possible to generalize the method to be considered for the cases where

there are more than two subcomponents. In this chapter in Section 6.2, it is

shown mathematically that the method presented in [103] for estimation of the

ERP components is not suitable for ERP subcomponent estimation because of

temporal correlation between the subcomponents. The new method proposed

here however, can result in a very good estimation of ERP subcomponent de-

scriptors.
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Therefore, unlike the previous works in ERP estimation [82, 103], the pro-

posed method is able to estimate the subcomponents such as P3a and P3b. The

method is applied to both simulated and real data and has shown to perform

very well even in low SNRs. The method has been compared with the spatial

PCA and its superiority confirmed by using simulated signals. In addition, the

two methods were compared in different spatial correlations. Finally it has been

compared with temporal PCA for different temporal correlations. The approach

can be useful in mental fatigue analysis where the relative variability of P300

subcomponents is the key factor in detecting the level of fatigue.

The remainder of this chapter is structured as follows. In Section 6.2 lin-

ear generative EEG model is described. Then, in Section 6.3, the new spatio-

temporal filtering method is proposed. In Section 6.4 the results of applying the

spatio-temporal filtering to simulated data following by a comparison study are

provided. The results of applying the method to the real data are provided in

Section 6.5. Finally, Section 6.6 concludes the chapter.

6.2 Linear Generative EEG Model

In this section a composite EEG model including two (generally correlated)

subcomponents is provided. For this we start with writing the linear generative

EEG model in matrix form as:

X = a s +

N∑

i=1

bini (6.1)

where X is a D × T matrix which represents the single trial EEG data of D

channels and T samples, s is a 1 × T vector that can represent the time course

of ERP component, ni denotes the 1×T noise in general, and N is the number

of noise components. The vectors aT and bT
i are of dimension 1×D and can be

considered as the projections of the corresponding source and background EEG

plus noise to the electrodes respectively, X can also be modelled in terms of its

constituent normalized components as:

X = σs0a0s0 +
N∑

i=1

σib0in0i (6.2)

where a0, s0, and n0i are the normalized versions of their counterparts in (6.1).

The scalars σs0 and σi are the overall contributions of the sources to the multi-

channel EEG data. It is expected that for a stable normalized scalp projection,
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a0 is fixed for all the trials and the amplitude σs0 changes across trials. Now, con-

sider a new equivalent formulation with respect to ERP subcomponents which

are potentially correlated (at this stage it is assumed that there are two over-

lapped subcomponents as the case for P3a and P3b):

X = σ1a1s1 + σ2a2s2 +

N∑

i=1

σib0in0i (6.3)

where σ1, a1, and s1 are the amplitude, scalp projection, and time course of

the first ERP subcomponent, and σ2, a2, and s2 are those of the second ERP

subcomponent of the combined component described by σs0, a0, s0 in equation

(6.2). Suppose that we have an estimation of the first subcomponent that is nor-

malized as y1. If we post-multiply its transpose to both sides of equation (6.3),

the following relation will be obtained (the cross term n0i.y
T
1 nearly vanishes be-

cause it is assumed that the noise including the background EEG is uncorrelated

with the ERP subcomponents):

X.yT
1 = σ1a1s1y

T
1 + σ2a2s2y

T
1 (6.4)

If we assume that the normalized estimated subcomponent y1 is exactly the same

as the first subcomponent, the first term will be equal to σ1a1 due to the normal-

ization operation, i.e. s1.y
T

1 is equal to 1. The main concern is with the second

term in which s2.y
T

1 becomes a scaling factor due to the existence of temporal

correlation between the subcomponents. If s2.y
T

1 were zero (having no temporal

correlation), X.yT

1 could result in an estimation of a1. Therefore, multiplication

of one of the estimated subcomponents by X is not useful for estimation of its

corresponding scalp projection due to the nonzero nature of the second term in

equation (6.4) in the case that the subcomponents are temporally correlated.

The above approach has been proposed and used in [103] in order to have an

initial estimation of the scalp projection a of the ERP component which is un-

correlated with the noise. But we showed that in the case of having temporally

correlated ERP subcomponents the method is not able to estimate the scalp

projections of the subcomponents. Hence, it is necessary to extend the method

to work for estimation of the correlated ERP subcomponents. In the next sec-

tion, the proposed spatio-temporal filtering method for solving this problem is

explained.
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6.3 Spatio-temporal Filtering Method

The proposed spatio-temporal filtering method for estimation of correlated ERP

subcomponents suppresses one subcomponent in spatial domain while detecting

the other one in temporal domain. Now, consider the following constrained

problem:

min ||wTX− r1||22 subject to wTa2 = 0 (6.5)

where both wT and aT
2 are 1×D vectors, r1 is a 1×T vector, D is the number

of channels, and T is the number of time samples. The constrained problem can

be converted to an unconstrained problem using Lagrange multipliers leading to

the following cost function:

F = ||wTX− r1||22 + wTa2q (6.6)

where q is the Lagrange multiplier. The gradient of F with respect to wT is:

∂F

∂wT
=

∂

∂wT
{r1r

T
1 − 2r1X

Tw + wTXXT w + wTa2q}

= −2r1X
T + 2wTXXT + qaT

2

(6.7)

By setting the above equation to zero and solving it for wT :

wT = 0.5(2r1X
T − qaT

2 )C−1
x (6.8)

where Cx = XXT . Since we are not sure if Cx is full rank, we used pseudo-

inverse for C−1
x . If (6.8) is substituted into the constraint in (6.5), we obtain:

wTa2 = 0.5(2r1X
T − qaT

2 )C−1
x a2 = 0; (6.9)

This is solved for q which results in:

q =
2r1X

TC−1
x a2

aT
2 C−1

x a2

(6.10)

Now, consider the main cost function in equation (6.5):

G = ||wT X− r1||22 (6.11)

By setting G to zero and solving it for w, the optimum solution given by wT
opt

to extract r1 is given by:

wT
opt = r1X

TC−1
x (6.12)
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By pre-multiplying wT
opt to both sides of equation (6.3), it can be seen that in

order to have an estimation of s1, in the case of having an appropriate reference

signal for s1 i.e. r1, wT
opta1 will be 1/σ1 and wT

opta2 will be zero. Therefore, wT
opt

should be orthogonal to a2. If a1 and a2 are orthogonal, then, wT
opt can be in

the direction of a1 vector. But this does not necessarily mean that a1 and a2

should be orthogonal. Some simulations showed that even when a1 and a2 are

not orthogonal, wT
opt is found in which wT

opta1 is 1/σ1 and wT
opta2 is very close

to zero.

The only constraint is that a1 and a2 should not be exactly in the same

direction. This is true for the case of having different ERP subcomponents.

This is because the subcomponents originate from distinct regions of the brain

and therefore, they are spatially disjoint. The scalp projections can also be

described using a forward matrix. This matrix models the mixing process of

the sources at the electrodes. When two sources are from different parts of the

brain, their forward projection vectors and as the result, their scalp projections

are not the same.

Therefore, it is concluded that in the case of having an exact reference for

s1, wT
opta1 = 1/σ1 and wT

opta2 = 0. Substituting wT
opt from equation (6.12) into

wT
opta2 = 0, the following equation will be obtained:

r1X
TC−1

x a2 = 0 (6.13)

Equation (6.13) is equal to the numerator of equation (6.10) and therefore, the

Lagrange multiplier will be zero. This is obvious because this makes the cost

functions F and G equal. In other words, when it is reasonable to have wT
opta2 =

0 there is no need to add the constraint wTa2 = 0 because as explained, this

holds implicitly.

Since it is shown that having wTa2 = 0 as the constraint in (6.5) is not

helpful, we define a new constrained problem which is similar to (6.5) but with

an alternative constraint. To do that, first a2 in the constraint term in (6.5) is

replaced with ã2. Later a suitable choice for ã2 is made and it is shown that

solving the new constrained problem leads to the estimation of scalp projection

for one of the correlated subcomponents. Therefore, in a similar manner, the

new constrained problem is defined as:

min ||wTX− r1||22 subject to wT ã2 = 0 (6.14)

After converting the constrained problem into an unconstrained problem us-

ing Lagrange multiplier, the new cost function is obtained as:
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F̃ = ||wTX− r1||22 + wT ã2q̃ (6.15)

Following equations (6.9) and (6.10) the following solution for the Lagrange

multiplier is achieved:

q̃ =
2r1X

TC−1
x ã2

ãT
2 C−1

x ã2

(6.16)

With the help of equations (6.8) and (6.16) wT is calculated as follows:

wT = r1X
TC−1

x − r1X
TC−1

x ã2

ãT
2 C−1

x ã2

ãT
2 C−1

x (6.17)

or

w = C−1
x XrT

1 − r1X
TC−1

x ã2

ãT
2 C−1

x ã2

C−1
x ã2 (6.18)

We pre-multiply both sides of the above equation by XT to obtain the following

equation:

XTw = XTC−1
x XrT

1 − r1X
TC−1

x ã2

ãT
2 C−1

x ã2

XTC−1
x ã2 (6.19)

A suitable choice is made for ã1 and ã2 as:

ã1 = XrT
1

ã2 = XrT
2

(6.20)

Therefore, it is simple to derive the following equations using equations (6.3)

and (6.20):

ã1 = σ1a1s1r
T
1 + σ2a2s2r

T
1

ã2 = σ1a1s1r
T
2 + σ2a2s2r

T
2

ã1 = σ1a1s1r
T
1 +

(ã2 − σ1a1s1r
T
2 )

s2r
T
2

s2r
T
1

ã1 = σ1a1s1r
T
1 + ã2

s2r
T
1

s2r
T
2

− σ1a1
s1r

T
2 (s2r

T
1 )

s2r
T
2

(6.21)

From the above equations, it can be seen that ã1 and ã2 are linear combinations

of the scaled a1 and a2. Having appropriate reference signals, when the correla-

tion between the subcomponents decreases, ã1 tends towards σ1a1 and ã2 tends

towards σ2a2.

In fact, even if by solving equation (6.5) we are able to estimate the scalp

projection for one subcomponent, having only the mixture matrix X, we do not
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have access to a1 or a2 (unless there is no correlation between the subcompo-

nents) in order to solve the constrained problem in (6.5). However, by using

the reference signals r1 and r2, as it is shown in (6.20) and (6.21), we can have

access to the linear combinations of the scaled scalp projections of both subcom-

ponents (a1,a2). Then, we can use any of the linear combinations and solve the

constrained problem in (6.14). In the following equations, we show that having

ã2 as defined in (6.20) by solving the constrained problem in (6.14) the scalp

projection for the first subcomponent (a1) is estimated. The same procedure can

be implemented in order to find the scalp projection for the second subcompo-

nent (a2). By replacing ã1 from equation (6.21) in equation (6.19), the following

equations can be derived:

XTw = XTC−1
x XrT

1 − ãT
1 C−1

x ã2

ãT
2 C−1

x ã2

XTC−1
x ã2

= XTC−1
x XrT

1

−
[σ1s1r

T
1 aT

1 +
s2r

T
1

s2r
T
2
ãT

2 − σ1
s1r

T
2 (s2rT

1 )

s2r
T
2

aT
1 ]C−1

x ã2

ãT
2 C−1

x ã2

XTC−1
x ã2

(6.22)

At this stage it is desired to show that aT
1 C−1

x ã2 = 0. Consider equation (6.13)

and use it with swapped indices as:

r2X
TC−1

x a1 = 0

ãT
2 C−1

x a1 = 0

aT
1 C−1

x ã2 = 0

(6.23)

These can be used to simplify equation (6.22) to:

XTw = XTC−1
x XrT

1 −
[
s2r

T
1

s2r
T
2
ãT

2 ]C−1
x ã2

ãT
2 C−1

x ã2

XTC−1
x ã2

= XTC−1
x XrT

1 − [
s2r

T
1

s2r
T
2

]XT C−1
x ã2

= XTC−1
x [σ1a1s1r

T
1 + σ2a2s2r

T
1 ]

− XTC−1
x [

s2r
T
1

s2r
T
2

][σ1a1s1r
T
2 + σ2a2s2r

T
2 ]

= XTC−1
x [σ1a1s1r

T
1 + σ2a2s2r

T
1 ]

− XTC−1
x [

s2r
T
1

s2r
T
2

σ1a1s1r
T
2 + σ2a2s2r

T
1 ]

(6.24)
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Then, XTw can be simplified more into:

XT w = XTC−1
x [σ1a1s1r

T
1 ] − XTC−1

x [
s2r

T
1

s2r
T
2

σ1a1s1r
T
2 ]

= XTC−1
x σ1a1[s1r

T
1 − s2r

T
1

s2r
T
2

(s1r
T
2 )]

(6.25)

By pre-multiplying equation (6.25) by X,

XXTw = XXT C−1
x σ1a1[s1r

T
1 − s2r

T
1

s2r
T
2

(s1r
T
2 )] (6.26)

Since Cx = XXT and XXTC−1
x = I, the following equation is derived:

XXTw = σ1a1[s1r
T
1 − s2r

T
1

s2r
T
2

(s1r
T
2 )] (6.27)

If XXTw is normalized to unit variance, a1 will be obtained. Therefore, following

(6.20) by using ã2 = XrT
2 , minimizing equation (6.15), solving it for w, and pre-

multiplying the resulted w, first by XT and then by X, we can have an estimate

of a1. This is the scalp projection of the first subcomponent whose corresponding

temporal reference signal is given by r1.

Therefore, equation (6.15) is shown to be useful in estimation of the scalp

projection of one of the correlated subcomponents. Considering equation (6.15)

and the results given by equation (6.27), the procedure for estimating the scalp

projection of the first subcomponent is illustrated in Algorithm 6.1.

Algorithm 6.1: ESP1 Estimation of the scalp projection

for the first subcomponent

a1 = ESP1 (X,r1,r2)

-Set C−1
x = (XXT )−1

-Set ã2 = XrT
2 (see eq. 6.20)

-Find q̃ = 2(r1X
TC−1

x ã2)/(ã
T
2 C−1

x ã2) (see eq. 6.16)

-Find w = C−1
x XrT

1 − 0.5q̃C−1
x ã2 (see eq. 6.18)

-Estimate a1 = (XXT w)/norm(XXTw) see (eq. 6.27)

Return a1

Similarly, to enable estimation of the scalp projection for the second subcom-

ponent, equation (6.15) can be replaced by the following equation:

F̃ = ||wTX− r2||22 + wT ã1q̃ (6.28)

Using the above equation, the same procedure can be followed in order to find the
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scalp projection of the second subcomponent. The Pseudo-code for estimating

the scalp projection of the second subcomponent is illustrated in Algorithm 6.2.

Algorithm 6.2: ESP2 Estimation of the scalp projection

for the second subcomponent

a2 = ESP2 (X,r1,r2)

-Set C−1
x = (XXT )−1

-Set ã1 = XrT
1

-Find q̃ = 2(r2X
TC−1

x ã1)/(ã
T
1 C−1

x ã1)

-Find w = C−1
x XrT

2 − 0.5q̃C−1
x ã1

-Estimate a2 = (XXT w)/norm(XXTw)

Return a2

Incorporating and estimating the spatial projecting vectors ã1 and ã2 into

the temporal least square (6.15) and estimation of wT significantly improve the

results and enable separation of temporally or spatially correlated signals such

as P3a and P3b. One achievement which has also been confirmed by simulation

is that in the case of a mismatch between the reference signal and the actual

source the normalized vector of XXTw does not change (or because of different

noise level it changes very slightly). In other words, the estimation of scalp

projection of one of the ERP subcomponents is not exactly dependent on the

shape of the reference signals. These references, although reasonably similar to

the source signals, are not their exact replications. When there is a mismatch

between the actual source and the reference signal, we can still have a very good

approximation of scalp projections of the subcomponents. This is due to the

fact that the mismatch results in the change of the scale ([s1r
T
1 − s2r

T
1

s2r
T
2
(s1r

T
2 )])

in equation (6.27) in the estimation. After normalization however, this has no

effect in estimation of the scalp projection.

In other words, the scale contains the dot product of the actual sources and

the reference signals. If the reference is not exactly the same as the source signal,

we have a different scale; however after normalization, the scale will not influence

estimation of the scalp projections. If both reference signals are uncorrelated

(or slightly correlated) with the source the vector XXT w tends to zero vector.

Therefore, we are able to check whether we are dealing with correct references

(or dealing with meaningful ranges of latencies for given references).

Nevertheless, in order to have a temporal estimation for each subcomponent,

we need to solve equation (6.11) to find wT
opt given in (6.12) and then pre-multiply

it by X. Therefore, given a reference signal for each subcomponent, wT
optX will

be the temporal estimation of that subcomponent.
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As stated in Chapter 5, Section 5.2, ERP subcomponents are modelled us-

ing parametric functions in many studies (e.g. see [98, 99]). The macroscopic

EEG electrical field is created from spike trains by a non-linear generator with

a second-order linear component with real poles as noted by Freeman [104].

According to this model, the impulse response of the system is a monophasic

waveform with a single mode, where the rising time depends on the relative

magnitude of the two real poles and can therefore vary compared to the falling

time. This means Gamma functions can best represent the brain activations.

Therefore, like the method in [103] we used Gamma wave as an approximation

to ERP subcomponents. Based on the defined algorithm, first, we generate two

references (r1, r2) which represent the first and second subcomponents using

Gamma functions expressed as:

r(t) = ctk−1exp(− t

θ
) (6.29)

where k > 0 is a shape parameter, θ > 0 is a scale parameter, and c is a

normalizing constant. The Gamma function can be considered as a monophasic

waveform with its mode at t = (k − 1)θ, (k > 1). The Gamma wave has a short

rise time and a longer tail for small k, and for the large k it is a symmetric

waveform. The Pseudo-code for the new spatio-temporal filtering method is

shown in Algorithm 6.3. This algorithm uses the procedures in EPS1 and EPS2

algorithms. Gamma waves are used for generating the reference signals. Also

in this algorithm several cost functions are defined in order to have reliable

estimations for the subcomponent parameters.

After generating Gamma wave as a reference signal for each ERP subcom-

ponent, we slide each reference in a range of valid latencies to generate more

reference signals for both subcomponents. We represent the peak latency of

the reference as τ . Having generated references, the value of ã1 and ã2 can be

obtained using equation (6.20). Then, it is possible to solve the unconstrained

problems given in (6.15) and (6.28) considering each reference and ãi (i=1,2)

that is obtained by using the reference for another subcomponent. Next, we

estimate w1(τ1) and w2(τ2) using equation (6.18) as shown in EPS1 and EPS2

Algorithms.

Then, considering three cost functions (J1(τ1), J2(τ2), and J̃(τ1, τ2)), we

choose the reference signals for which the sum of the three cost functions is

minimum. Finally, we are able to estimate a1, a2, σ1, and σ2. Practically, better

results are achieved in estimation of peak latency if we use J̃(τ1, τ2) cost function.

This cost function is obtained from equations (6.11) and (6.12) by considering

sum of the reference signals and also each reference signal separately. This is
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not surprising since for temporal estimation of the subcomponents it is preferred

to use wopt given in equation (6.12) and for the estimation of scalp projection

and the amplitude it is better to use the constrained problem given in (6.14).

Therefore, for estimation of the peak latency we use wopt resulted when using the

reference signals for each subcomponent and considering J̃(τ1, τ2) cost function.

Algorithm 6.3 New spatio-temporal filtering method

-Generate r1(τ1),r2(τ2) considering reasonable ranges of peak

latencies [τ1 ∈ Ts1, τ2 ∈ Ts2] for the first and second

subcomponents using Gamma waves

-Set ã1(τ1) = Xr1(τ1)
T and ã2(τ2) = Xr2(τ2)

T

-Find w1(τ1) = C−1
x Xr1(τ1)

T − r1(τ1)XT C
−1
x ã2(τ2)

ãT
2 (τ2)C−1

x ã2(τ2)
C−1

x ã2(τ2)

w2(τ2) = C−1
x Xr2(τ2)

T − r2(τ2)XT
C

−1
x ã1(τ1)

ãT
1 (τ1)C−1

x ã1(τ1)
C−1

x ã1(τ1)

-Set J1(τ1) = ||wT
1 (τ1)X − r1(τ1)||22 + w1(τ1)

T ã2(τ2)q̃

J2(τ2) = ||wT
2 (τ2)X− r2(τ2)||22 + w2(τ2)

T ã1(τ1)q̂

J̃(τ1, τ2) = ||(r(τ1) + r(τ2))[X
T C−1

x X − I]||22+

||r(τ1)[XTC−1
x X− I]||22 + ||r(τ2)[XTC−1

x X − I]||22
[l1, l2] = argmin

τ1,τ2

(J1(τ1) + J2(τ2) + J̃(τ1, τ2))

-Estimate a1 = XXT w1(l1)
norm(XXT w1(l1))

a2 = XXT w2(l2)
norm(XXT w2(l2))

σ1 = 1/[(r1(l1)X
TC−1

x )(a1)]

σ2 = 1/[(r2(l2)X
TC−1

x )(a2)]

-Find the peak latencies as [τ̃1, τ̃2] = argmin
τ1,τ2

J̃(τ1, τ2)

6.4 Simulation Results

In this section, the method is applied to simulated data and the corresponding

results are demonstrated. The goal of the simulation study is to evaluate the

ability of the method in estimation of peak latency, amplitude, and scalp pro-

jection of the ERP subcomponents in single trials in different SNR levels. In

addition, the performance of the proposed method and the PCA method have

been compared. In the following, the PCA, spatial PCA, and temporal PCA
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methods are briefly described. Then, a comparison study including the simula-

tion results is provided.

6.4.1 PCA, Temporal PCA, Spatial PCA, and Spatio-temporal

PCA

Statistical decomposition of ERPs has been of great interest among ERP re-

searchers over the past several decades. A variety of methods have been pro-

posed in which PCA [105, 106, 107] has been the simplest and most widely used

method. PCA uses eigenvalue decomposition to extract linear combinations of

variables from a data covariance matrix. Therefore, PCA can be performed by

eigenvalue decomposition of a data covariance matrix or by singular value de-

composition (SVD) of a data matrix. In SVD decomposition the data matrix is

usually mean centered for each variable.

The target outputs of a PCA algorithm are the component scores and load-

ings. The component scores are the transformed variable values corresponding

to a particular case in the data while the component loadings are the variance

each original variable would have if the data were projected onto a given PCA

axis. Mathematically, PCA can be considered as an orthogonal linear trans-

formation that transforms the data to a new coordinate system. In the new

coordinate system, the greatest variance by any projection of the data comes to

lie on the first coordinate in which is called the first principal component. Then,

the second greatest variance lie on the second coordinate as the second principal

component, and so on [106]. Suppose the data matrix XT is available; this data

matrix contains n rows, which represent n observations, and m columns which

represent m features. The SVD of X is given by:

X = BΣVT (6.30)

where B is the m × m matrix of the eigenvectors of XXT , Σ is the m × n

rectangular diagonal matrix with nonnegative real numbers on the diagonal,

and matrix V is n × n. When the same number of principal components as

original variables are obtained, then PCA has preserved the dimensionality as:

YT = XT B

= VΣT

(6.31)

In the cases where m < n− 1, V is not uniquely defined whereas Y is uniquely
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defined. Each row of YT is a rotation of the corresponding row of XT . This is

due to the fact that by definition of the SVD of a real matrix, B is an orthogonal

matrix. The first column of YT consists of the scores with respect to the first

principal component, while the second column has the scores with respect to the

second principal component, and so on.

In a reduced-dimensionality representation, the data matrix X is projected

down into the reduced space defined by only the first L singular vector:

Y = BT
LX

= ΣLVT
L

(6.32)

Matrix B of eigenvectors of the observation covariances C = XXT matrix is

equivalent to matrix B of singular vectors of X:

XXT = BΣΣTBT (6.33)

If we consider a set of points in Euclidean space, the first extracted principal

component corresponds to a line that minimizes the square sum of the distances

of the points from the line. This line should pass through the multidimensional

mean. In a similar manner, the second extracted principal component corre-

sponds to a line that has the minimum square sum of the distances of the points

from that line. Before extracting the second principal component, all the cor-

relation with the first principal component should be subtracted out from the

points. The singular values in Σ are the square roots of the eigenvalues of matrix

XXT .

Each eigenvalue is proportional to the portion of the variance (square sum

of distances of the points from their multidimensional mean) that corresponds

to each eigenvector. Therefore, the sum of all the eigenvalues is equal to the

square sum of the distances of the points from their multidimensional mean.

PCA algorithm rotates the set of points around their mean in order to find the

principal components. Using an orthogonal transformation, the most variance

is moved into the first few dimensions. The other components which have small

variances can be removed without loss of information. The mean centering (mean

subtraction) of the data before applying PCA is necessary to ensure that the first

principal component represents the direction of maximum variance. If mean

subtraction is not performed, it is possible that the first principal component is
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similar to the mean of the data. The first principal component is obtained as:

b1 = argmax
‖b‖=1

Var bTX = argmax
‖b‖=1

E{(bTX)2} (6.34)

Having the first k− 1 extracted principal components, the kth principal compo-

nent can be obtained by subtracting the first k − 1 principal components from

the data matrix X:

X̂k−1 = X −
k−1∑

i=1

bib
T
i X (6.35)

By considering X̂k−1 as the new data matrix, the next principal component will

be obtained as:

bk = argmax
‖b‖=1

E{(bT X̂k−1)
2} (6.36)

In ERP analysis, PCA has been used mainly for separation of the ERP com-

ponents/subcomponents from the background EEG [108, 109]. However, other

applications of PCA can be in data reduction or filtering. This is because PCA

can be used to simplify the analysis of complex data by compressing the impor-

tant information into small number of components.

Factor rotation

PCA is applied to the ERP data in two steps. The first step is principal com-

ponent extraction as explained above. From now on, for simplicity the principal

components are referred to as the factors. This initial extraction results in an

un-rotated solution [108]. The output of the first step is a factor loading matrix

and a factor score matrix. The factor loading matrix relates to the correlations

between the variables and the factor scores while the factor score matrix rep-

resents the magnitude of the factors for each of the observations. Therefore,

the factor score matrix represents the relationship between the factors and the

observations. Multiplication of factor loading and factor score matrices, will

reproduce the data matrix.

In ERP analysis, by applying PCA it is expected to extract ERP subcom-

ponents or components. However, there is not a one-by-one map between the

extracted principal components (factors) and ERP subcomponents/components.

The PCA generates those factors that account for maximum variance. These fac-

tors may be influenced by more than one ERP component/subcomponent after
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the initial extraction in the first step [108]. For example a factor can be a hy-

brid of two ERP components (e.g 90% of the one ERP component and 10% of

another ERP component). Since the final goal in applying PCA is to have fac-

tors, each representing one ERP component/subcomponent, a post-processing

technique should be performed on the extracted factors. The used technique is

factor rotation. Factor rotation is used to restructure the allocation of variables

to those factors which are more likely to present the latent variables (ERP com-

ponents/subcomponents). The most common factor rotation is Varimax [110].

In Varimax, the factors are rotated pairwise iteratively, until the change in

the solution is trivial. The Varimax procedure rotates the two factors such that

the sum of the factor loadings is maximized. Therefore, new factors are generated

that are as close to zero for some variables as possible, while others are as large

as possible. It is expected that these generated factors closely correspond to a

single ERP component/subcomponent. This rotation process can be illustrated

as a scatterplot in which the axes are the factors and each point represents a

single variable. The rotation process rotates the axes of the coordinate system

such that the axes pass through the most concentrated groupings of the points.

In other words, the rotation arranges the factor loadings of each variable to be

as large for one factor and as small for the other factors as possible.

The Varimax rotation is sensitive to the correlations and overlap between

the ERP components/subcomponents. Therefore, it affects the accuracy of the

system [108]. In both steps i.e. the initial extraction and Varimax rotation,

the strict orthogonality is maintained between the factors (so the factors are

assumed to be uncorrelated). Therefore, the correlation between ERP compo-

nents/subcomponents violates the statistical uncorrelatedness assumptions. The

more the ERP components/subcomponents are correlated, the more the solu-

tion will be inaccurate and produce misallocation of variance among the factors.

However, component correlation is effectively addressed using oblique rotations

such as Promax [111]. In Promax rotation, the correlation between the factors

are allowed. Promax performs an initial Varimax rotation, then it relaxes the

orthogonality restrictions which allows the factors to become correlated. Con-

sidering the scatter plot, this is equivalent to the Varimax rotation. However

each axis is rotated separately and therefore, there is no need for the axes to be

perpendicular. Therefore, if ERP components/subcomponents are correlated,

using Promax rotation a more accurate solution will be obtained.

Temporal PCA

In temporal PCA, the data matrix is organized in a way that the variables are
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the recorded potential at each time point, and the observations correspond to

different waveforms recorded at each channel [108, 109]. Therefore, the number

of variables is equal to the number of time points, and the number of observa-

tions is equal to the number of channels. After arrangement of the data matrix,

PCA is applied to the data matrix for initial component extraction. Then, a

factor rotation algorithm should be applied to the extracted factors. Previous

results suggest that when using the temporal PCA, it is preferred to use the

Promax rotation as the rotation algorithm [108]. The factor loadings which are

the output of the temporal PCA algorithm correspond to the time course of

each factor while the factor score corresponds to the magnitude of each factor

for different channels.

Since the variables in temporal PCA algorithm are the recorded potentials

at each time point, the output consists of the factors that are temporally uncor-

related. Therefore, if in an ERP dataset, the ERP components/subcomponents

are highly correlated in temporal domain, it is very difficult for the temporal

PCA to extract the factors which are uncorrelated in time domain. In this

case it is very likely to obtain only one factor which is a mixture of two cor-

related factors. However, temporal PCA is very effective for the case that the

ERP components/subcomponents are correlated in spatial domain while much

less correlated in temporal domain. Thus, temporal PCA makes use of tempo-

ral domain information in order to separate spatially correlated ERP compo-

nents/subcomponents. If the ERP components/subcomponents are more corre-

lated in temporal domain rather than spatial domain, another approach should

be applied. The previously suggested approach for decomposition of temporally

correlated ERP components/subcomponents is spatial PCA which is explained

in the following sub-section.

Spatial PCA

In spatial PCA, the data matrix is organized in a way that the variables consist

of potentials recorded at each channel and the observation corresponds to the

recorded potentials at each time point [108, 109]. Therefore, the number of vari-

ables is equal to the number of channels and the number of observations is equal

to the number of time points. After arrangement of the data matrix, the PCA is

applied to the data matrix for initial component extraction. Then, as for tempo-

ral PCA, a factor rotation algorithm should be applied to the extracted factors.

Previous results suggest that when using the spatial PCA, it is preferred to use

the Infomax rotation [112] as the rotation algorithm [108]. The factor loadings,

which are the output of the spatial PCA algorithm, correspond to the recorded



6.4. SIMULATION RESULTS 84

voltage at each channel for each factor while the factor scores correspond to the

magnitude of each factor at different time points.

Since the variables in spatial PCA algorithm are the measured voltage at

each channel, the output consists of the factors that are spatially uncorrelated.

Therefore, if in an ERP dataset, the ERP components/subcomponents are highly

correlated in spatial domain, it is very difficult for the spatial PCA to extract

factors which are uncorrelated in spatial domain. In this case it might have only

one factor mixture of two correlated factors, since it is very difficult to distinguish

between the factors in spatial domain. However, spatial PCA is very effective

for the cases where the ERP components/subcomponents are correlated in tem-

poral domain while much less correlated in spatial domain. Thus, spatial PCA

makes use of spatial domain in order to separate temporally correlated ERP

components/subcomponents. Therefore, the choice of applying spatial PCA or

temporal PCA depends on the specification of the ERP dataset. If the ERP

components/subcomponents are more correlated in temporal domain, the spa-

tial PCA should be applied. If the ERP components/subcomponents are more

correlated in spatial domain, temporal PCA should be applied.

Spatio-temporal PCA

To address limitations of temporal PCA and spatial PCA, a two step proce-

dure has been recently proposed [113]. In the two step procedure the spatial

PCA is applied in the first step while temporal PCA is applied in the second

step. The method is called spatio-temporal PCA. However, if in the first step

temporal PCA and in the second step spatial PCA is applied, then, the method

is called temporospatial PCA. In spatio-temporal PCA, after applying spatial

PCA (considering channels as variables) the resulted factor score should be re-

arranged. Since in the second step temporal PCA is applied to each resulted

factor scores, the factor scores should be rearranged in a way that the new

variables are the time points. In fact this two step method must be applied

to a dataset which consists of the multi-channel data matrix of several trials

and/or from several subjects. In this way in the second step, when rearrang-

ing the factor score in to the new variables, the new observation corresponds

to different trials from different subjects. It is obvious that the two-step PCA

(spatio-temporal/temporospatial PCA) is not suitable for single trial analysis of

ERP data from one subject, since in this case the number of observation in the

second step will be equal to one and the second PCA can not be performed.

It is also suggested to use the two-step PCA for general cases where the spec-

ification of ERP dataset is not known [113]. For example, if a dataset consists of
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Figure 6.1: Synthetic and presumed reference signals for P3a and P3b used in the
simulation study. The waveforms with dotted lines represent different approximations
for actual signals and two of them are selected as the presumed reference signals for
simulating the Mismatch case.

mixtures of ERP components/subcomponents, which some of them can be sepa-

rated temporally and some of them spatially, the two-step PCA provides a gener-

ally applicable procedure. However, if the ERP components/subcomponents can

be clearly separated in spatial domain or in temporal domain, the corresponding

one-step approach is preferred to take advantage of the stronger statistical power.

Therefore, the two-step PCA algorithm is a general approach for a dataset hav-

ing mixtures of different ERP components/subcomponents also when the ERPs

are recorded from multiple trials or multiple subjects.

6.4.2 Comparison Study

In this section, a set of simulated data were generated to compare the results of

the proposed method with the existing methods. Two Gamma waves were gen-

erated as the representations of ERP subcomponents and the method is applied

in order to quantify the estimation error of their descriptors (latency, amplitude,

and scalp projections). For simplicity, we called the first subcomponent P3a and

the second subcomponent P3b. The Gamma waves were used as approximations

of the P300 subcomponents. The simulated subcomponents are shown in Fig.

6.1 as the synthetic P3a and P3b subcomponents. These subcomponents have

temporal correlation of 0.69 (0 refers to no temporal correlation and 1 to perfect

temporal correlation). So, they are highly correlated in the temporal domain.

We used a three layer spherical head model with conductivities of 0.33, 0.0042,

0.33 µS/cm, for scalp, skull, and brain, respectively [114].

Then, we placed P3a and P3b in frontal and posterior parts of the brain

respectively. The locations for simulated P3a and P3b are shown in Fig. 6.2.
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Figure 6.2: Locations of the simulated P3a and P3b inside the brain; (a) transverse
view, (b) sagittal view.

Using the forward model obtained by the BrainStorm software [115] and setting

the moments for P3a and P3b in three different axes, scalp projections of P3a and

P3b are generated. These scalp projections are the results of multiplication of the

forward matrix and moments of each subcomponent. The spatial correlations

are considered as the correlation between the scalp projections. The spatial

correlation for the simulated P3a and P3b was set to 0.26 (0 refers to no spatial

correlation and 1 to perfect spatial correlation). Then, using equation (6.3), a

20 channel dataset was generated. Each channel included 40 trials. In all of the

trials the latency of P3a was fixed at 150 ms and the latency of P3b was fixed

at 200 ms as in Fig. 6.1. The amplitudes of P3a and P3b change in different

trials. The variance of the noise was fixed at all the trials.

First, we applied the method to the generated simulated data considering

the reference signal as the actual synthetic source. We called this method Exact

match. Then, we used other reference signals for P3a and P3b which were not

exactly the same as the actual synthetic sources. These waves for P3a and P3b

are shown in Fig. 6.1 as the presumed P3a and P3b subcomponents. The method

considering these references is called Mismatch.

As explained in the previous section, the spatial PCA is expected to be more

effective when the aim is separation of the components with similar time courses

while temporal PCA is expected to be more effective at separating components

with similar scalp topographies [108, 109]. Since in our simulation the temporal

correlation is high, it is reasonable to compare the results with spatial PCA

rather than temporal PCA. Then, we used spatial PCA from ERP PCA Toolkit

[116] in which the ICA Infomax [117] is used as the rotation algorithm. We
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considered 40 trials in 9 different SNR levels. The SNR in dB is defined as:

SNR = 10log10(
Psignal

Pnoise
) (6.37)

The results of estimation of scalp projections, amplitudes, and latencies of P3a

and P3b by applying the above three methods (spatial PCA, Exact match and

Mismatch) are shown in Table 6.1, Table 6.2, and Table 6.3 respectively. The

mean correlation coefficient between the estimated and actual scalp projections

for P3a and P3b in 40 trials using three methods are shown in Table 6.1.

One drawback of using spatial PCA is that there are situations in which it

fails to reconstruct both subcomponents. In this case, however, one subcom-

ponent has been estimated with a good accuracy; the estimation for another

subcomponent is far away from the actual subcomponent. For example, in some

trials when the spatial PCA fails to estimate one subcomponent, the correlation

coefficient between the estimated and actual scalp projection for that subcom-

ponent is close to zero. We discarded those trials in which spatial PCA fails

to estimate one subcomponent and only considered the case that spatial PCA

is able to estimate both subcomponents. From Table 6.1 it can be seen that

generally when SNR decreases the number of discarded trials increases.

In the estimation of scalp projections of P3a and P3b in negative SNR,

Exact match and Mismatch methods provide very good approximations. There-

fore, with respect to scalp projection estimation our method outperforms spatial

PCA. For P3b we have consistent results for SNRs of -8 to 8. So, when the SNR

increases, the correlation coefficient between the estimated and actual scalp pro-

jections tends to 1. Also, there is a slight difference between the Exact match and

Mismatch methods. This is what we expect from the designed filter. Because

the designed filter in the left hand side of equation (6.27) is able to estimate the

Table 6.1: Scalp projection estimation for P300 subcomponents in different SNRs for
different methods. The values are mean correlation coefficients between the estimated
and actual scalp projections in 40 trials

P3a Scalp projection P3b Scalp projection

SNR(dB) PCA Exact Match Mismatch PCA Exact Match Mismatch Discarded Trials

−8 0.6444 0.9371 0.9357 0.6501 0.9156 0.9019 64%
−6 0.7432 0.9677 0.9632 0.7580 0.9470 0.9343 48%
−4 0.8171 0.9800 0.9703 0.8820 0.9652 0.9523 23%
−2 0.8784 0.9840 0.9685 0.9292 0.9819 0.9704 18%
0 0.9057 0.9810 0.9580 0.9454 0.9910 0.9832 16%
2 0.9225 0.9735 0.9428 0.9291 0.9961 0.9913 9%
4 0.9307 0.9688 0.9354 0.9296 0.9974 0.9957 6%
6 0.9199 0.9625 0.9256 0.9051 0.9975 0.9975 14%
8 0.9037 0.9598 0.9215 0.8847 0.9984 0.9976 16%
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scaled scalp projection of one subcomponent, when we use the reference signals,

there is a change in that scale. In a low noise situation this has very little effect

(because of normalization of the left hand side of equation (6.27)).

However for P3a we have inconsistency in all methods. These inconsistencies

can be explained in terms of having 0.26 spatial correlation between the sub-

components. In Table 6.1 the increase in the correlation coefficient of the actual

and estimated P3a scalp projection with the increase in the noise level is mainly

because more noise can decrease the correlation between the subcomponents. In

Table 6.1, the noise effect in decreasing the correlation, and as a result, better

estimation can be seen in some ranges of SNRs for all the methods.

For confirmation of robustness we performed another experiment considering

two scalp projections which had a small spatial correlation of 0.1 and the results

were consistent for nearly all other methods. In Table 6.2 the mean and variance

of the ratio between the actual and estimated amplitudes in 40 trials are shown

considering all the methods. When SNR increases this ratio tends toward 1 for

all methods. In the amplitude estimation a bias can be seen for the Exact match

and Mismatch methods.

Regarding amplitude estimation, spatial PCA results in a better estimation.

In Table 6.3, the mean and variance of estimated latency in 40 trials is shown

considering the three methods. From this table, it can be seen that considering

Exact match method, the mean of estimated latency for P3a tends to 150 and

for P3b towards 200 with the increase in SNR. Also the variance of estimation

continuously decreases when the SNR increases. In the case of Mismatch, a bias

in latency estimation can be seen, however, the variance of estimation decreases

when the SNR increases.

Regarding latency estimation, the Exact match method outperforms the spa-

tial PCA and Mismatch methods. Since, with decrease in the SNR level, the

variance of estimation for spatial PCA increases, Mismatch method seems to

Table 6.2: Amplitude estimation for P300 subcomponents in different SNRs for different
methods. The values are means and variances of the ratios between the actual and
estimated amplitudes in 40 trials.

P3a Amplitude P3b Amplitude

SNR(dB) PCA Exact Match Mismatch PCA Exact Match Mismatch

−8 0.9872 ± 0.1130 1.9841 ± 0.1030 1.9882 ± 0.1785 1.3364 ± 0.1787 1.7276 ± 0.1506 1.8001 ± 0.1356
−6 1.0130 ± 0.1000 1.6423 ± 0.1072 1.6691 ± 0.1030 1.3335 ± 0.0837 1.4022 ± 0.1436 1.4634 ± 0.1410
−4 1.0857 ± 0.0873 1.5054 ± 0.0929 1.5434 ± 0.0909 1.4230 ± 0.1435 1.2766 ± 0.0922 1.3387 ± 0.0917
−2 1.1309 ± 0.0708 1.3971 ± 0.0592 1.4509 ± 0.0508 1.4224 ± 0.1317 1.2119 ± 0.0796 1.2703 ± 0.0721
0 1.1349 ± 0.0540 1.3160 ± 0.0549 1.3857 ± 0.0648 1.3561 ± 0.1092 1.0941 ± 0.0688 1.1616 ± 0.0675
2 1.1179 ± 0.1110 1.2767 ± 0.0625 1.3534 ± 0.0630 1.2941 ± 0.0716 1.0239 ± 0.0416 1.0982 ± 0.0475
4 1.1302 ± 0.0301 1.2192 ± 0.0412 1.2956 ± 0.0437 1.2747 ± 0.0636 1.0012 ± 0.0459 1.0782 ± 0.0489
6 1.1085 ± 0.0703 1.2042 ± 0.0367 1.2858 ± 0.0406 1.2436 ± 0.0500 0.9668 ± 0.0296 1.0428 ± 0.0261
8 1.0927 ± 0.0538 1.1807 ± 0.0326 1.2678 ± 0.0381 1.2077 ± 0.0478 0.9464 ± 0.0282 1.0256 ± 0.0263
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be more robust. If we evaluate and compare only Exact match and Mismatch

methods, we can see that the best approximation is for the scalp projections.

Therefore, in the case of Mismatch a bias in latency and amplitude estimation

can be seen. This is because we directly designed a filter for estimation of scalp

projections of one subcomponent considering two reference signals. Then, we

showed that in the case of having reference signals, which are not necessarily the

exact source signals, there is a scale change with no effect after normalization.

Therefore, the estimated scalp projection in the case of Mismatch in low noise

conditions is almost independent of the shape of reference signal. However, we

do not directly estimate the latencies and amplitudes of the subcomponents;

instead, we use the estimated scalp projections and some other cost functions

as shown in Algorithm 6.3. Therefore, in the case of Mismatch, the more the

reference signal is similar to the exact signal, the better estimation for latency

and amplitude is achieved.

Effect of real noise

In an experiment, we used 600ms pre-stimulus data as the background EEG

and used it as noise. Therefore, in SNR calculation the power of background

EEG is considered as the power of noise. For SNR close to 0, the results of

averaging over 40 trials are shown in Table 6.4.

The aim of this experiment was to compare the performance of three methods

in the case of having a non-Gaussian and non-linear noise which is more real-

istic. It can be seen that the Exact Match outperforms the Mismatch method

and both of them outperform PCA method. Also it seems that PCA method is

less robust in the case of having only background EEG as the noise.

Effect of reference mismatch

Table 6.3: Latency estimation for P300 subcomponents in different SNRs for different
methods. The values are means and variances of the estimated latencies in 40 trials.

P3a Latency P3b Latency

SNR(dB) PCA Exact Match Mismatch PCA Exact Match Mismatch

−8 204.0667 ± 109.1588 153.3000 ± 2.6929 158.6333 ± 4.7885 187.2667 ± 42.0344 208.0333 ± 6.8857 193.5333 ± 10.9505
−6 160.4333 ± 58.1903 154.6667 ± 2.0567 164.7000 ± 4.4346 199.5667 ± 31.1389 202.4333 ± 5.7816 184.6000 ± 8.4225
−4 147.6000 ± 17.4111 154.6333 ± 1.9737 165.4667 ± 3.2667 217.7667 ± 24.8231 200.7333 ± 4.0166 182.2667 ± 6.3078
−2 152.7000 ± 8.2927 153.6667 ± 1.5610 163.9000 ± 2.8569 213.2667 ± 19.6362 198.7667 ± 3.5495 184 ± 9.1576
0 148.2333 ± 6.7194 153.0667 ± 0.9072 163.6333 ± 2.1088 216.8667 ± 15.0143 197.3000 ± 4.0099 181.0333 ± 5.6598
2 150 ± 8.2838 151.9000 ± 0.8847 162.6000 ± 1.6316 213.8333 ± 19.8791 198.7333 ± 3.5227 189.5667 ± 14.8804
4 149.4000 ± 4.4458 151.2667 ± 0.6915 162.4333 ± 1.1651 220.2333 ± 13.9350 198.4000 ± 2.9431 208.4000 ± 14.4857
6 148.2667 ± 6.2474 150.7667 ± 0.5040 164.2667 ± 0.8277 217.8667 ± 13.7984 198.5667 ± 2.3146 218.0333 ± 1.1885
8 146.7667 ± 5.4815 150.4000 ± 0.4983 165.2333 ± 0.6261 216.8000 ± 10.7748 198.8667 ± 1.7564 219.2000 ± 0.6644
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In Table 6.5 we tried to show the effects of different choices for reference sig-

nals. We changed the shape of P3a and P3b by changing their k and θ values in

equation (6.29) and generated different reference signals which are shown in Fig.

6.1 as dotted lines. From Table 6.5 it can be seen that with different degrees of

Mismatch we have different bias in estimation. When the Mismatch is very high

as it can be seen from the 15th row of Table 6.5, there is a high bias in latency

estimation. The estimations in Table 6.5 are the average estimation considering

15 trials at SNR 0. The bold row corresponds to our special reference choice for

P3a and P3b (presumed P3a and P3b in Fig. 6.1).

Effect of spatial correlation

In another experiment we kept the temporal correlation at 0.69 for P3a and

P3b as in Fig. 6.1. We then changed the locations and moments of P3a and P3b

in the brain in order to generate different levels of spatial correlations. In each

level, we generated 15 trials. By considering all the methods (and two different

SNR levels of -5 and 0), we calculated the average of correlation coefficients be-

tween the estimated and actual scalp projections which are shown in Fig. 6.3 for

both SNRs. The Exact match and Mismatch methods outperform the spatial

PCA in less than 0.9 spatial correlations. In both SNR levels the performances of

Exact match and Mismatch methods drop as the spatial correlation approaches

1. For spatial correlation less than 0.9, Exact match and Mismatch methods

outperform the spatial PCA.

Effect of temporal correlation

Our method is compared with temporal PCA from ERP PCA Toolkit [116]

in different temporal correlations considering two SNR levels of -5 and 0. In

temporal PCA algorithm, Promax is used as the rotation algorithm with the

rotation parameter 3, the relationship matrix type is covariance based, and the

loading normalization is Kaiser. The results are illustrated in Fig. 6.4. The spa-

tial correlation between the subcomponents is 0.26 and the result is the average

of the results for 15 trials. It is clear that the performance of the temporal PCA

Table 6.4: P300 subcomponents parameter estimation at SNR = 0 dB considering back-
ground EEG as noise.

P3a P3b

Parameter PCA Exact Match Mismatch PCA Exact Match Mismatch

Scalp Projection 0.7044 0.8944 0.8614 0.8890 0.9620 0.9584
Amplitude 0.7087 ± 0.0667 1.1759 ± 0.2063 1.1843 ± 0.2067 0.7968 ± 0.0306 0.9833 ± 0.1166 0.9600 ± 0.1263

Latency 136.0667 ± 19.8302 150.7000 ± 0.8367 165.6667 ± 2.2335 230.3667 ± 35.9976 200.6333 ± 3.6054 219.2333 ± 1.1943
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degrades with the increase in the temporal correlation. In addition, low noise

situation has an adverse effect in temporal PCA. Clearly, our method, which

exploits both temporal and spatial domain and has no assumption on the un-

correlatedness or orthogonality of the subcomponents either in time or spatial

domain, outperforms the PCA/ICA based methods.

Finally, we tried to show a single trial estimation of scalp projection, ampli-

tude, and latency of P3a and P3b considering all three methods (spatial PCA,

Exact match and Mismatch). For these single trials, the latencies and amplitudes

of P3a and P3b change in different trials; therefore we have different temporal

correlations between P3a and P3b. In Fig. 6.5 the correlation coefficients of

estimated and actual scalp projections and latency estimation in the 30 single

trials are provided. In Fig. 6.6 the amplitude estimation is shown, in addition,

in this figure, the temporal correlation between P3a and P3b and SNR values in

each trial are shown. In the next section the method is applied to the real data

and the results are provided.

6.5 Real Data Results

The EEG data were recorded using a Nihon Kohden model EEG-F/G amplifier

and Neuroscan Acquire 4.0 software. The international 10 – 20 electrode setting

system was used to record EEG activity from 15 electrodes. The impedance for

all the electrodes was below 5kΩ. The sampling frequency (Fs) was 2kHz and

the data were bandpass filtered (0.1 – 70 Hz). This frequency range was chosen

to be consistent with [118]. In order to avoid any interference, the subjects were

required to sit alert with their eyes closed.

In addition, in order to avoid any muscle artefact, the neck was firmly sup-

ported by the back of the chair, feet were rested on a footstep, and stimuli

Table 6.5: Effects of Mismatch in P300 subcomponents descriptor’s estimation.

K - P3a K - P3b K P3a latency P3a amplitude P3a scalp K P3b Latency P3b amplitude P3b scalp

1 Fix decrease 22 156.3333 ± 1.0465 1.1814 ± 0.0532 0.9889 9 192.0667 ± 2.5204 1.2033 ± 0.0712 0.9922
2 Fix decrease 22 161.4667 ± 1.5055 1.1055 ± 0.0491 0.9892 4 190.5333 ± 2.0656 1.2641 ± 0.0695 0.9911
3 Fix increase 22 150.2667 ± 1.1629 1.2953 ± 0.0649 0.9619 19 208.1333 ± 4.1381 1.1752 ± 0.0846 0.9939
4 Fix increase 22 150.3333 ± 1.1751 1.3289 ± 0.0697 0.9496 24 213.6000 ± 2.9228 1.1705 ± 0.0865 0.9942

5 decrease Fix 17 155.2667 ± 0.9612 1.2618 ± 0.0619 0.9766 14 196.8000 ± 5.2807 1.1567 ± 0.0797 0.9914
6 decrease Fix 12 163.5333 ± 1.3020 1.3024 ± 0.0609 0.9753 14 189.6667 ± 5.2327 1.1015 ± 0.0757 0.9917
7 increase Fix 27 150.4000 ± 0.9103 1.2760 ± 0.0601 0.9766 14 198.3333 ± 4.5930 1.1522 ± 0.0786 0.9953
8 increase Fix 32 149.3333 ± 0.8997 1.2678 ± 0.0573 0.9765 14 197.7333 ± 4.6517 1.1688 ± 0.0806 0.9946

9 increase increase 27 148.3333 ± 1.1629 1.2909 ± 0.0621 0.9620 19 207.7333 ± 3.7315 1.1954 ± 0.0863 0.9920
10 increase increase 32 148.2000 ± 1.1464 1.3409 ± 0.0680 0.9498 24 211.9333 ± 2.8402 1.1616 ± 0.0856 0.9946
11 decrease decrease 17 160.2667 ± 1.3345 1.2794 ± 0.0543 0.9896 9 191.8000 ± 2.3361 1.1275 ± 0.0662 0.9912
12 decrease decrease 12 170.0000 ± 0 1.2229 ± 0.0510 0.9881 4 191.4000 ± 2.4437 1.2248 ± 0.0712 0.9901

13 decrease increase 17 153.0000 ± 1.0690 1.3481 ± 0.0635 0.9626 19 204.2000 ± 10.2901 1.0838 ± 0.0772 0.9911
14 decrease increase 12 159.0000± 1.4639 1.3561 ± 0.0696 0.9492 24 195.3333± 17.1159 1.0832± 0.0797 0.9916

15 decrease increase 7 170.0000 ± 0 1.4178 ± 0.0700 0.9419 27 180 ± 0 0.9834 ± 0.0750 0.9580
16 increase decrease 27 154.2000 ± 1.0823 1.1725 ± 0.0493 0.9891 9 191.4667 ± 2.5317 1.2178 ± 0.0715 0.9897
17 increase decrease 32 156.9333 ± 1.2799 1.0754 ± 0.0433 0.9895 4 188.8667 ± 2.1996 1.2820 ± 0.0688 0.9853
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Figure 6.3: Comparison between three methods (spatial PCA, Exact Match and Mis-
match) with respect to the correlation coefficient between the original and estimated
scalp projections of P3a (left column) and P3b (right column) in different spatial corre-
lations and two SNR levels of -5 dB (top row) and 0 dB (bottom row).
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Figure 6.4: Comparison between three methods (temporal PCA, Exact Match and Mis-
match) with respect to the correlation coefficient between the original and estimated
scalp projections of P3a (left column) and P3b (right column) in different temporal
correlations and two SNR levels of -5 dB (top row) and 0 dB (bottom row).
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Figure 6.5: In the top row, the correlation coefficient between the original and estimated
scalp projections of P3a and P3b obtained by the three methods (spatial PCA, Exact
Match and Mismatch) in each trial are shown. In the bottom row, single trial estimation
of latencies of P3a and P3b obtained by the three methods (spatial PCA, Exact Match
and Mismatch) in each trial are shown.
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Figure 6.6: In the top row, single trial estimation of amplitudes of P3a and P3b obtained
by the three methods (spatial PCA, Exact Match and Mismatch) in each trial are shown.
In the bottom row, SNR and temporal correlations between P3a and P3b in each trial
are shown.

were presented through ear plugs inserted in the ear. Forty rare tones (1 kHz)

were randomly distributed amongst 160 frequent tones (2 kHz). Their intensity

was 65 dB with 10- and 50-milliseconds duration for rare and frequent tones,

respectively.

The subjects were asked to press a button as soon as they heard a low tone (1

kHz). Before the start of the experiment, the ability of the subject to distinguish

between low and high tones was confirmed. The basis of the designed task is to

assess basic memory processes. ERP components measured in this task included

N100, P200, N200, P3a and P3b. Forty trials from one subject related to the

infrequent (rare) tones were selected and the proposed method for estimation

of latency, amplitude and scalp projections of P3a and P3b was applied. These

trials and their average from channel Fz is shown in Fig. 6.7.

For selection of reference signals, we used the averaged P300 as it is shown

in Fig. 6.8. In the top row the selected reference signals have little overlap with

the average P300. The normalized estimated scalp projection using left hand

side of equation (6.27) is depicted for both P3a and P3b. It can be seen that

the scalp projection values for P3a are negative or very close to zero. This can

be explained from equation (6.27) because the term s1r
T
1 seems to be zero or

very close to zero. We slide the references (with slight changes in their shapes)
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Figure 6.7: Single Trial ERPs (40 trials related to the infrequent tones) and their average
from channel Fz.
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Figure 6.8: Selection of reference signals for P3a and P3b. In each row, the reference
signals for P3a and P3b with their estimated scalp projections are shown. By sliding the
reference signals towards and away from the averaged P300 and varying their shapes, the
observed changes in their estimated scalp projections are helpful for reference selection.
The reference signals shown in the middle row which have high correlation with the
averaged P300 are used as good candidates for approximating the actual P3a and P3b.
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Figure 6.9: estimated amplitudes for P3a and P3b in different trials.

towards having more correlation with the average P300 as it is shown in the

middle row.

The estimated scalp projections seem to be more reasonable since they do

not contain only negative or very close to zero values. We can further slide

the references as it is shown in the bottom row and we can see that this time

the scalp projection for the second subcomponent has negative values in all the

entries. In the top row, the reference signal for P3a seems to have no correlation

(or very little correlation) with actual P3a so its estimated scalp projection has

negative or very close to zero values in all entries, however it seems that there

are some correlations between the reference signal and the actual signal for P3b.

In the bottom row, the reference signal for P3a seems to have overlap with the

actual P3b, therefore, in the first estimated subcomponent, P3b scalp projections

appeared. The reference signal for P3b seems to have no correlation with actual

P3b and the estimated scalp projection has negative values in all entries. It is

also possible to use arbitrary shapes for P3a and P3b to see which shapes are

more reasonable using the estimated scalp projections.

For our dataset, by testing different shapes for P3a and P3b, P3b shape was

more likely to be wider than P3a. We have used the selected reference signals

in middle row of Fig. 6.8 for P3a and P3b. After selecting the reference signals

we estimated the amplitude, latency, and scalp projections of P3a and P3b in

40 trials.

The amplitude variations of the P3a and P3b are shown in Fig. 6.9. We

fitted a polynomial with degree of 9 to P3a and P3b amplitudes in order to

see the total variability across trials. The mean latency of P3a was obtained as

283.3ms and the mean latency of P3b was obtained as 367.6ms. The estimated
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Figure 6.10: Scalp projections of P3a in four selected progressive trials.

 

 

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

 

 

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(e) (f) (g) (h)

Figure 6.11: Scalp projections of P3b in four selected progressive trials.

scalp projections of P3a and P3b in four selected trials are shown in Fig. 6.10

and Fig. 6.11. It can be seen from these figures that P3a has a more fronto-

central distribution as expected and P3b has more posterior distribution. The

scalp projections were plotted using EEGlab [117].

From Fig. 6.7 it can be seen that the average ERP lacks the early ERPs

such as N100 and P200, however these ERPs were detected by using the average

of trials related to the frequent tones. If in a dataset the early ERPs have large

amplitudes and may interfere the estimation, it is useful to segment the data

and extract the time-locked epochs, for example between 200ms and 500ms, and

then apply the method for estimation of P300 subcomponents. The proposed

method can be applied in order to investigate mental fatigue based on trial-

to-trial amplitude and latency variations of the P300 subcomponents and the

relative trends of P300 subcomponent variations. In addition, estimation of the

scalp projections can be useful for detecting the changes in locations of P300

subcomponents for schizophrenic patients.

6.6 Conclusions

In this chapter a new spatio-temporal filtering method for single trial estimation

of ERP subcomponents is proposed. The method defines new cost functions in
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which the scalp projection of each subcomponent can be obtained. The proposed

method here overcomes the problem of the existence of temporal correlation

between the ERP subcomponents in the previous research [103].

Based on the simulation results the method is robust in the estimation of

latency, amplitude, and scalp projections. However, when there is a mismatch

between a reference signal and the actual source, an offset error in estimation

of the latency and amplitude occurs. This may not cause problems in some

applications. However, the scalp projections of both subcomponents have been

estimated with high accuracy even when there is a mismatch between the actual

source and the reference signal. This is obvious, because the designed filter for

estimation of the scalp projection is able to estimate the scaled scalp projection

of one of the subcomponents. When there is a mismatch between the actual

source and the reference signal, only the scale is changed. Therefore, the nor-

malized version of the estimated scalp projection vector does not change; this is

very important when we are dealing with localization of ERP subcomponents in

the brain. Using the simulated signals, it is shown that our proposed method

outperforms PCA/ICA based methods and a better approximation for scalp pro-

jections is obtained here. This leads to better localization of the subcomponents

in the brain which can be exploited in another research.

The method also has been applied to real data. It has been shown that it is

useful and effective for single trial estimation of P300 subcomponents. This is

very demanding for some applications such as mental fatigue where the relative

variability of ERP subcomponent descriptors is useful in order to determine the

level of fatigue.



Chapter 7

Implementation of EEG-based

and ERP-based Approaches to

Detection of Mental Fatigue;

an Auditory Based Paradigm

7.1 Introduction

In this chapter an auditory-based paradigm is proposed and implemented when

EEG data is recorded in two states of alert and fatigue. The EEG data is

recorded at the beginning of experiment while the subject is not fatigue. Then,

at the end of experiment when the subject has completed a mental arithmetic

task, EEG data is recorded in the fatigue state. The aim of this chapter is to

apply the proposed methods in the previous chapters for spatio-temporal esti-

mation of ERPs and EEG phase synchronization to the recorded EEG in an

auditory-based paradigm which can be used for detection of fatigue state. The

remainder of the chapter is structured as follows. In Section 7.2 the experimen-

tal setup is explained. Then, in Section 7.3 the results of applying the proposed

method in Chapter 6 to the recorded data is provided. In Section 7.4 the EEG

phase synchronization is estimated for the recorded data considering the pro-

posed method in Chapter 4. Finally, Section 7.5 concludes the chapter.
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7.2 Experimental Setup

The experiment was run in a quiet and normally illuminated room. The sub-

ject which was a 50 years old male was sitting comfortably in an armchair and

had given informed consent before the start of experiment. The EEG data was

recorded using a 32-channel QuickAmp amplifier and Ag/AgCl electrodes posi-

tioned according to the extended 10-20 system and re-referenced to linked ears.

In addition, vertical (VEOG) and horizontal (HEOG) electrooculographic sig-

nals were recorded bipolarly using electrodes above and below the left eye and

from the outer canthi. The EEG Data was recorded in DC mode at 1000 Hz

with respect to an average reference. The EEG data is also notch filtered at 50

Hz.

The electrode positions are shown in Fig. 7.1. By adding gel, electrode

impedances were reduced to less than 5kΩ. The EEG signal was recorded at the

start of the experiment during the auditory oddball task. The subject heard 180

tones, 40 of them were infrequent tones while 140 of them were frequent tones.

The subject was asked to respond to the infrequent tones by pressing a button.

Each trial duration was set to 4 seconds.

After completing the initial recoding of the EEG, the subject was asked to

perform a mental arithmetic task continuously for two hours. The subject had

also the option of stopping the mental arithmetic task if he felt that he is very

tired and is not willing to continue. The Matlab software was used to provide

a demo which generates two random integers between 1 and 10. The subject

had to enter the sum of the generated random numbers and then press ENTER

key on the keyboard or ‘Submit’ button in the demo. The demo is shown in

Fig. 7.2. After 2 hours performing the arithmetic task, the EEG data of the

subject was recorded during the same auditory oddball task in the beginning of

the experiment. In the next two sections the results of applying the proposed

methods in Chapters 6 and 4 to the recorded EEG signal are provided.

7.3 Estimation of Single Trial P300 Subcomponents

Considering the results provided in Chapter 6, it is expected the P300 to be

better elicited by infrequent tones. Therefore, using the spatio-temporal filtering

method proposed in Chapter 6, it is possible to estimate P300 subcomponent

parameters and evaluate their changes during the fatigue state considering the

infrequent tones. The spatio-temporal filtering method was applied to the 40

trials relating to the infrequent tones in order to estimate P300 subcomponent

parameters. One second of EEG signal after the stimulus onset in infrequent
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Figure 7.1: The electrode names (left) and numbers (right) which used in the experiment.

Figure 7.2: This GUI generates two random integers any time the subject presses EN-
TER key on the keyboard or ‘Submit’ button.
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trials was segmented. The average of these trials (considering 600ms) from Cz

channel was used in order to select appropriate reference signals. Forty single

trial ERPs from channel Cz and their average before and during fatigue are

shown in Fig. 7.3 and Fig. 7.4 respectively. The two averaged ERPs are shown

separately in Fig. 7.5 for the two states of before and during fatigue. These

average ERPs are used in order to select an appropriate reference signal for P3a

and P3b. As it is shown in Chapter 6, the reference signals should have high

correlation with the averaged ERP.

It can be seen from the averaged ERPs that as expected in the fatigue state

there is a reduced amplitude and increased latency in the P300 wave. However

the reduction in amplitude is very trivial and this is not always a sign of fatigue

state. In addition the increased latency does not necessary correspond to the

increased latency in all single trials since it is averaged over only one channel

considering 40 trials. Therefore, there is a need for single trial estimation of the

ERPs.

The spatio-temporal filtering method proposed in Chapter 6 is applied to the

single trial ERPs before and during fatigue state to estimate P300 subcomponent

descriptors (latency, amplitude, and scalp projections). The mean latency of P3a

and P3b before fatigue state was obtained as 279.6 ms and 335.5 ms respectively.

The mean latency of P3a and P3b during fatigue state was obtained as 325.5 ms

and 372.2 ms respectively. As expected, the latency of P3a and P3b are increased

in the fatigue state. The estimated amplitudes of P3a and P3b are shown in Fig.

7.6 and Fig. 7.7. By fitting a polynomial of degree 10 to the estimated P3a and

P3b amplitudes before and during fatigue state, it can be seen that in the fatigue

state there is a less variability in P3a and P3b amplitudes in single trials. The

scalp projections of P3a and P3b for five selected trials are shown in Fig. 7.8

and Fig. 7.9 for before and during fatigue state respectively.

Although there is not a significant difference in the estimated scalp projec-

tions for P3a and P3b before and during fatigue state, the important issue is the

separation of these subcomponents and estimation of other parameters. The re-

sults obtained by considering one subject confirm that the suggested paradigm

can be a good option for designing a mental fatigue detection system in fu-

ture studies and the estimation of P300 subcomponent parameters can be good

features for discriminating the fatigue state. However, the full mental fatigue

analysis should be conducted using more subjects and more features which can

be obtained from both EEG and ERP. Other important features can be obtained

using phase synchronization measures. In the next section, the proposed adap-

tive methods in Chapter 4 are used to measure the EEG phase synchronization

to the recorded EEG data.
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Averaged ERP before fatigue

Figure 7.3: Forty single trial ERPs and their average from Cz channel before fatigue.
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Averaged ERP during fatigue

Figure 7.4: Forty single trial ERPs and their average from Cz channel during fatigue
state.
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Figure 7.5: The averaged ERP of forty trials before and during fatigue state from Cz
channel.
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Figure 7.6: The estimated P3a amplitudes in single trials before and during fatigue
state.
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P3b during fatigue

P3b fitting during fatigue

P3b before fatigue

P3b fitting before fatigue

Figure 7.7: The estimated P3b amplitudes in single trials before and during fatigue
state.

Figure 7.8: The estimated scalp projections of P3a (top row) and P3b (bottom row)
before fatigue.
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Figure 7.9: The estimated scalp projections of P3a (top row) and P3b (bottom row)
during fatigue.

7.4 Estimation of EEG Phase Synchronization

Considering the results provided in Chapter 4, the phase synchronizations of

different EEG rhythms especially alpha rhythm can be used as good features for

discrimination of the fatigue state. Three seconds of the data segment is consid-

ered and EMD is applied to decompose the EEG signal into its oscillations. For

beta rhythm, ALE is applied to the resulted IMF. One second of data segment

(1000 samples) before stimulus onset and one second after stimulus onset are

considered for measuring the phase synchronization.

Beta and theta rhythms are extracted from frontal electrodes (F3 and F4

channels) and alpha rhythm is extracted from central electrodes (C3 and C4

channels). The phase synchronization is calculated for five trials for one second

before and after stimulus onset. The results of calculated phase synchronization

for theta, alpha, and beta rhythms are shown in Fig. 7.10, Fig. 7.11, and Fig.

7.12 respectively.

In these figures the average phase synchronization is also depicted in thick

line. From these figures the changes in phase synchronization can be clearly

seen for beta, alpha, and theta rhythms before stimulus onset. Therefore, using

the recorded EEG signal the EEG phase synchronization can be considered as a

good feature for discrimination of the fatigue state.

7.5 Conclusions

In this chapter, an auditory oddball task was implemented during the EEG

recording. The EEG signal was recorded in two sessions, one at the start of the

experiment and the other after the subject had completed a prolonged mental

task. The single trial P300 subcomponents were estimated in the infrequent

trials. EEG phase synchronization was also estimated around stimulus onset.
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Figure 7.10: Theta phase synchronization of F3-F4; (a) before stimulus and (b) after
stimulus
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Figure 7.11: Alpha phase synchronization of C3-C4; (a) before stimulus and (b) after
stimulus

0 250 500 750 1000
0

0.2

0.4

0.6

0.8

1

Sample Number

P
h

a
s
e

 S
y
n

c
h

ro
n

iz
a

ti
o

n

 

 
before stimulus − during fatigue

before stimulus − before fatigue

0 250 500 750 1000
0

0.2

0.4

0.6

0.8

1

Sample Number

P
h

a
s
e

 S
y
n

c
h

ro
n

iz
a

ti
o

n

 

 

after stimulus − during fatigue

after stimulus − before fatigue

(a) (b)

Figure 7.12: Beta phase synchronization of F3-F4; (a) before stimulus and (b) after
stimulus
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The results demonstrate the effectiveness of applying the methods for the odd-

ball paradigm which can be considered as a vigilance test for detection of the

fatigue state. In addition by applying the proposed methods for spatio-temporal

estimation of P300 subcomponents and EEG phase synchronization, the results

demonstrate the use of estimated EEG phase synchronization and single trial

P300 subcomponents as appropriate and effective features for the analysis and

understanding of mental fatigue.



Chapter 8

Summary, Conclusions and

Future Works

8.1 Summary and Conclusions

Over the past decade, there has been increasing scientific interest in detection

of mental fatigue state. However the research in mental fatigue analysis using

EEG signals has been limited to classical methods whereby simple features from

the signals are compared or classified. In addition the analysis of mental fatigue

cannot be completed using only one type of biometric. The general strategy in

a mental fatigue detection system is to fuse as many features as possible. These

features can be obtained from different kinds of input signals (e.g. EEG, ECG)

and it is important to extract features which are most relevant. After designing

the mental fatigue detection system, an alarming signal may be produced to

indicate the warning of the fatigue state and prevent accidents.

In this study, analysis of mental fatigue is conducted by following two impor-

tant directions. One direction is using EEG signal and extracting its effective

features related to EEG phase synchronization. The other direction is using the

ERP signal and estimating its parameters in single trials. New methods for each

direction have been proposed in this study.

In the traditional methods, average ERP is used for evaluating the changes in

the ERP signal before and during fatigue state. However the average ERP does

not always correspond to the appearance of mental fatigue since the averaging

results in loss of information related to the trial to trial variability of ERPs.

The inter-trial variability of ERPs can change in the fatigue state. Therefore,

109



8.1. SUMMARY AND CONCLUSIONS 110

there is an essential need to apply the single trial-based method for estimation

of ERPs. In this study, two methods for single trial estimation of ERPs have

been proposed. One of them is a temporal method based on RBPF and the other

one a spatio-temporal filtering method based on constrained optimization. In the

temporal method, tracking of the ERPs in single trials has been considered while

in the spatio-temporal filtering method ERPs are estimated in both spatial and

temporal domains. In addition, the designed spatio-temporal filtering method

has been shown to be robust against both temporal and spatial correlations

between the ERP subcomponents.

For analysis of mental fatigue based on EEG signals, classical methods calcu-

late power spectrum of EEG in different frequency bands before and during the

fatigue state. To account for non-stationarity of the EEG signals, there is a need

for application of the recent adaptive methods which are suitable for analysing

non-stationary and non-linear signals. These methods include EMD and ALE.

In addition it is beneficial to measure synchronization of the brain activity in

different brain regions. EMD and ALE have been proposed for decomposing the

EEG signals into their oscillations and then denoising them. The phase syn-

chronization of different EEG oscillations over different parts of the brain are

calculated to observe the changes in the fatigue state. In addition, the RBPF

was proposed for estimation of instantaneous phase of an EEG oscillation. The

method has provided a new insight into the estimation of instantaneous phase

which can be extended for measuring phase synchronization in future studies.

The effect of mental fatigue relates to reduced performance and decreased

vigilance [119]. Through designing a vigilance test based paradigm it is possible

to detect the changes in the vigilance state of the subject during the fatigue

state. Auditory reaction time can be used as an objective assessment of vigilance.

Therefore, in Chapter 7 an auditory based paradigm has been used. Based on the

proposed paradigm, at the beginning of the experiment a vigilance test is taken

from the subject using an oddball task. Then, at the end of experiment, when

the subject has completed a prolonged mental task, the vigilance test is taken

again. The proposed methods have been applied to estimate the single trial P300

subcomponents and the EEG phase synchronization. The results demonstrate

the effectiveness of using the auditory oddball paradigm in a mental fatigue

detection system.
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8.2 Future Works

The new methods proposed in this study for estimation of single trial ERPs

and EEG phase synchronization can be used for extracting reliable features in

a mental fatigue detection system. As it is emphasized in this study, compre-

hensive analysis of mental fatigue cannot be performed by relying on only few

features. In future studies, a classifier or a regression method can be used for

online detection of mental fatigue state considering the features that must be

obtained by applying the proposed methods in this study and also considering

more subjects.

The proposed method in Chapter 4 which combines EMD and RBPF and

estimates the instantaneous phase of the EEG oscillation should be further ex-

tended in order to estimate the EEG phase synchronization in real time effec-

tively. Since this method uses RBPF with several constraints, the parameters

should be selected appropriately and a reasonable number of particles should be

used for the method to be applicable in real time situations.

The proposed methods in this thesis can be used for the study of driver

fatigue. One of the major causes for driver fatigue based accidents is sleepiness

[120]. Since sleepiness or drowsiness reduces the reaction time and as the result

the vigilance state of the driver, the suggested auditory paradigm and estimation

of ERPs can be used in a driver fatigue detection scenario.

In some research, especially in driver fatigue, different types of fatigue are of-

ten considered the same and the drowsiness level of the driver or his/her fatigue

state is estimated. However, it is very crucial to distinguish between task-related

fatigue and sleep related fatigue by designing appropriate assessment or record-

ing paradigms. For example, in a paradigm for detection of mental fatigue, only

mental task related fatigue should be included and for the paradigm in sleepiness

detection both sleepiness and mental task effect should be considered. Evalua-

tion of mental fatigue can also depend on subject, age, sex, any possible brain

abnormality, recording time, environment, emotional and social engagement, and

many other parameters. A robust fatigue monitoring system should indeed take

all these factors into account.
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