16 research outputs found

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Reviewing the use of resilience concepts in forest sciences

    Get PDF
    Purpose of the review Resilience is a key concept to deal with an uncertain future in forestry. In recent years, it has received increasing attention from both research and practice. However, a common understanding of what resilience means in a forestry context, and how to operationalise it is lacking. Here, we conducted a systematic review of the recent forest science literature on resilience in the forestry context, synthesising how resilience is defined and assessed. Recent findings Based on a detailed review of 255 studies, we analysed how the concepts of engineering resilience, ecological resilience, and social-ecological resilience are used in forest sciences. A clear majority of the studies applied the concept of engineering resilience, quantifying resilience as the recovery time after a disturbance. The two most used indicators for engineering resilience were basal area increment and vegetation cover, whereas ecological resilience studies frequently focus on vegetation cover and tree density. In contrast, important social-ecological resilience indicators used in the literature are socio-economic diversity and stock of natural resources. In the context of global change, we expected an increase in studies adopting the more holistic social-ecological resilience concept, but this was not the observed trend. Summary Our analysis points to the nestedness of these three resilience concepts, suggesting that they are complementary rather than contradictory. It also means that the variety of resilience approaches does not need to be an obstacle for operationalisation of the concept. We provide guidance for choosing the most suitable resilience concept and indicators based on the management, disturbance and application context

    Mechanism-Based Modeling of Perioperative Variations in Hemoglobin Concentration in Patients Undergoing Laparoscopic Surgery

    Full text link
    Hemoglobin concentration ([Hb]) in the perioperative setting should be interpreted in the context of the variables and processes that may affect it to differentiate the dilution effects caused by changes in intravascular volume. However, it is unclear what variables and processes affect [Hb]. Here, we modeled the perioperative variations in [Hb] to identify the variables and processes that govern [Hb] and to describe their effects.We first constructed a mechanistic framework based on the main variables and processes related to the perioperative [Hb] variations. We then prospectively studied patients undergoing laparoscopic surgery, divided into 2 consecutive cohorts for the development and validation of the model. The study protocol consisted of serial measurements of [Hb] along with recordings of hemoglobin mass loss, blood volume loss, fluid infusion, urine volume, and inflammatory biomarkers measurements, up to 96 hours postoperatively. Mathematical fitting was performed using nonlinear mixed-effects. Additionally, we performed simulations to explore the effects of blood loss and fluid therapy protocols on [Hb].We studied 154 patients: 118 enrolled in the development group and 36 in the validation group. We characterized the perioperative course of [Hb] using a mass balance model that accounted for hemoglobin losses during surgery, and a 2-compartment model that estimated fluid kinetics and intravascular volume changes. During model development, we found that urinary fluid elimination represented only 24% of the total fluid elimination, and that total fluid elimination was inhibited after surgery in a time-dependent manner and influenced by age. Also, covariate evaluation showed a significant association between the type of surgery and proportion of fluid eliminated via urine. In contrast, neither the type of infused solution, blood volume loss nor inflammatory biomarkers were found to correlate with model parameters. In the validation analysis, the model demonstrated a considerable predictive capacity, with 95% of the predicted [Hb] within -4.4 and +5.5 g/L. Simulations demonstrated that hemoglobin mass loss determined most of the postoperative changes in [Hb], while intravascular volume changes due to fluid infusion, distribution, and elimination induced smaller but clinically relevant variations. Simulated patients receiving standard fluid therapy protocols exhibited a hemodilution effect that resulted in a [Hb] decrease between 7 and 15 g/L at the end of surgery, and which was responsible for the lowest [Hb] value during the perioperative period.Our model provides a mechanistic and quantitative understanding of the causes underlying the perioperative [Hb] variations.Copyright © 2023 International Anesthesia Research Society
    corecore