1,980 research outputs found

    A conceptual study of spirituality in selected writings of Emile Jaques-Dalcroze

    Get PDF
    Several authors have noted that one of Émile Jaques-Dalcroze’s aims was to dissolve the mind–body dualism, typical of Cartesianism. However, there has been little research on the spirit–body connection, as it appears in Jaques-Dalcroze’s writings. The purpose of this document analysis is to understand how a hermeneutic phenomenological model for spirituality in music education can inform our understanding of spirituality in selected writings by Jaques-Dalcroze. In the adapted model holism, balance, aesthetic experience, and movement in time, space, and with energy emerged as core concepts. This gives us a much richer understanding of the Dalcroze approach than has hitherto been available and adds to a growing narrative about the spiritual as it pertains to Jaques-Dalcroze and the approach he initiated

    Proton Irradiation Effect on Thermoelectric Properties of Nanostructured N-Type Half-Heusler Hf\u3csub\u3e0.25\u3c/sub\u3eZr\u3csub\u3e0.75\u3c/sub\u3eNiSn\u3csub\u3e0.99\u3c/sub\u3eSb\u3csub\u3e0.01\u3c/sub\u3e

    Get PDF
    Thermoelectric properties of nanostructured half-Heusler Hf0.25Zr0.75NiSn0.99Sb0.01 were characterized before and after 2.5 MeV proton irradiation. A unique high-sensitivity scanning thermal microprobe was used to simultaneously map the irradiation effect on thermal conductivity and Seebeck coefficient with spatial resolution less than 2 μm. The thermal conductivity profile along the depth from the irradiated surface shows excellent agreement with the irradiation-induced damage profile from simulation. The Seebeck coefficient was unaffected while both electrical and thermal conductivities decreased by 24%, resulting in no change in thermoelectric figure of merit ZT. Reductions in thermal and electrical conductivities are attributed to irradiation-induced defects that act as scattering sources for phonons and charge carriers

    High Temperature Oxidation Kinetics of Dysprosium Particles

    Get PDF
    Rare earth elements have been recognized as critical materials for the advancement of many strategic and green technologies. Recently, the United States Department of Energy has invested many millions of dollars to enhance, protect, and forecast their production and management. The work presented here attempts to clarify the limited and contradictory literature on the oxidation behavior of the rare earth metal, dysprosium. Dysprosium particles were isothermally oxidized from 500 to 1000 °C in N2–(2%, 20%, and 50%) O2 and Ar–20% O2 using simultaneous thermal analysis techniques. Two distinct oxidation regions were identified at each isothermal temperature in each oxidizing atmosphere. Initially, the oxidation kinetics are very fast until the reaction enters a slower, intermediate region of oxidation. The two regions are defined and the kinetics of each are assessed to show an apparent activation energy of 8–25 kJ/mol in the initial region and 80–95 kJ/mol in the intermediate oxidation reaction region. The effects of varying the oxygen partial pressure on the reaction rate constant are used to show that dysprosium oxide (Dy2O3) generally acts as a p-type semiconductor in both regions of oxidation (with an exception above 750 °C in the intermediate region)

    A Preliminary List of the Haliplidae Known to Occur in Iowa

    Get PDF
    The family of Coleoptera known as Haliplidae or the Crawling Water Beetles includes small sized beetles that may be readily recognized by the oval shape and the ten segmented filiform antennae. They are usually light brown or yellow, spotted with black, in color. The elytra have rows of punctures and are widest near the front

    Vibration-induced granular segregation: a phenomenon driven by three mechanisms

    Full text link
    The segregation of large spheres in a granular bed under vertical vibrations is studied. In our experiments we systematically measure rise times as a function of density, diameter and depth; for two different sinusoidal excitations. The measurements reveal that: at low frequencies, inertia and convection are the only mechanisms behind segregation. Inertia (convection) dominates when the relative density is greater (less) than one. At high frequencies, where convection is suppressed, fluidization of the granular bed causes either buoyancy or sinkage and segregation occurs.Comment: 4 pages. 3 figures, revtex4, to appear in PRL (in press

    High-Temperature Corrosion Testing of Uranium Silicide Surrogates

    Get PDF
    The corrosion resistance of cerium silicide, a surrogate of uranium silicide, is investigated to gain insight into the reaction of uranium silicide with water. As-received and proton-irradiated Ce3Si2, CeSi2, and CeSi1.x monolithic pellets are subjected to corrosion tests in water at 300°C and 9 MPa for up to 48 h. Results show that an oxide layer composed of Ce4.67 (SiO4)3O forms on the surface of all samples, and it grows thicker with extended exposure times. Irradiated samples corrode to a greater extent than their unirradiated counterparts, which is mainly a result of the existing post-irradiation cerium oxide and the presence of ion-induced defects. Most of the Ce3Si2 samples crack (as-received) or fracture (ion-irradiated) during testing, which is due to the brittleness of the samples and oxide erosion/spallation that occur during testing

    Systemic resistance in citrus to Tetranychus urticae induced by conspecifics is transmitted by grafting and mediated by mobile amino acids

    Get PDF
    Recent research suggests that systemic signalling and communication between roots and leaves plays an important role in plant defence against herbivores. In the present study, we show that the oviposition of the two-spotted spider mite Tetranychus urticae in the systemic leaves of citrus rootstock Citrus aurantium (sour orange) was reduced by 50% when a lower leaf was previously infested with conspecifics. Metabolomic and gene expression analysis of the root efflux revealed a strong accumulation of glutamic acid (Glu) that triggered the expression of the citrus putative glutamate receptor (GRL) in the shoots. Additionally, uninfested sour orange systemic leaves showed increased expression of glutamate receptors and higher amounts of jasmonic acid (JA) and 12-oxo-phytodienoic acid in plants that were previously infested. Glu perception in the shoots induced the JA pathway, which primed LOX-2 gene expression when citrus plants were exposed to a second infestation. The spider mite-susceptible citrus rootstock Cleopatra mandarin (C. unshiu) also expressed systemic resistance, although the resistance was less effective than the resistance in sour orange. Surprisingly, the mobile signal in Cleopatra mandarin was not Glu, which suggests a strong genotype-dependency for systemic signalling in citrus. When the cultivar Clemenules (C. clementina) was grafted onto sour orange, there was a reduction in symptomatic leaves and T. urticae populations compared to the same cultivar grafted onto Cleopatra mandarin. Thus, systemic resistance is transmitted from the roots to the shoots in citrus and is dependent on rootstock resistance
    • …
    corecore