44 research outputs found

    Spin state and moment of inertia of Venus

    Full text link
    Fundamental properties of the planet Venus, such as its internal mass distribution and variations in length of day, have remained unknown. We used Earth-based observations of radar speckles tied to the rotation of Venus obtained in 2006-2020 to measure its spin axis orientation, spin precession rate, moment of inertia, and length-of-day variations. Venus is tilted by 2.6392 ±\pm 0.0008 degrees (1σ1\sigma) with respect to its orbital plane. The spin axis precesses at a rate of 44.58 ±\pm 3.3 arcseconds per year (1σ1\sigma), which gives a normalized moment of inertia of 0.337 ±\pm 0.024 and yields a rough estimate of the size of the core. The average sidereal day on Venus in the 2006-2020 interval is 243.0226 ±\pm 0.0013 Earth days (1σ1\sigma). The spin period of the solid planet exhibits variations of 61 ppm (∌\sim20 minutes) with a possible diurnal or semidiurnal forcing. The length-of-day variations imply that changes in atmospheric angular momentum of at least ∌\sim4% are transferred to the solid planet.Comment: 20 pages, 7 figures, supplementary information. Submitted to Nature Astronomy on October 14, 202

    Three red suns in the sky: A transiting, terrestrial planet in a triple M-dwarf system at 6.9 pc

    Get PDF
    We present the discovery from Transiting Exoplanet Survey Satellite (TESS) data of LTT 1445Ab. At a distance of 6.9 pc, it is the second nearest transiting exoplanet system found to date, and the closest one known for which the primary is an M dwarf. The host stellar system consists of three mid-to-late M dwarfs in a hierarchical configuration, which are blended in one TESS pixel. We use MEarth data and results from the Science Processing Operations Center data validation report to determine that the planet transits the primary star in the system. The planet has a radius of 1.38−0.12+0.13{1.38}_{-0.12}^{+0.13} R⊕{R}_{\oplus }, an orbital period of 5.35882−0.00031+0.00030{5.35882}_{-0.00031}^{+0.00030} days, and an equilibrium temperature of 433−27+28{433}_{-27}^{+28} K. With radial velocities from the High Accuracy Radial Velocity Planet Searcher, we place a 3σ upper mass limit of 8.4 M⊕{M}_{\oplus } on the planet. LTT 1445Ab provides one of the best opportunities to date for the spectroscopic study of the atmosphere of a terrestrial world. We also present a detailed characterization of the host stellar system. We use high-resolution spectroscopy and imaging to rule out the presence of any other close stellar or brown dwarf companions. Nineteen years of photometric monitoring of A and BC indicate a moderate amount of variability, in agreement with that observed in the TESS light-curve data. We derive a preliminary astrometric orbit for the BC pair that reveals an edge-on and eccentric configuration. The presence of a transiting planet in this system hints that the entire system may be co-planar, implying that the system may have formed from the early fragmentation of an individual protostellar core.Accepted manuscrip

    Radar Observations and the Shape of Near-Earth Asteroid 2008 EV5

    Full text link
    We observed the near-Earth asteroid 2008 EV5 with the Arecibo and Goldstone planetary radars and the Very Long Baseline Array during December 2008. EV5 rotates retrograde and its overall shape is a 400 /pm 50 m oblate spheroid. The most prominent surface feature is a ridge parallel to the asteroid's equator that is broken by a concavity 150 m in diameter. Otherwise the asteroid's surface is notably smooth on decameter scales. EV5's radar and optical albedos are consistent with either rocky or stony-iron composition. The equatorial ridge is similar to structure seen on the rubble-pile near-Earth asteroid (66391) 1999 KW4 and is consistent with YORP spin-up reconfiguring the asteroid in the past. We interpret the concavity as an impact crater. Shaking during the impact and later regolith redistribution may have erased smaller features, explaining the general lack of decameter-scale surface structure.Comment: This paper has been accepted for publication in Icarus: http://www.sciencedirect.com/science/article/B6WGF-5207B2F-4/2/d87cd2ae4da00c2b277e2dc79a532c4

    The G1613A Mutation in the HBV Genome Affects HBeAg Expression and Viral Replication through Altered Core Promoter Activity

    Get PDF
    Infection of hepatitis B virus (HBV) causes acute and chronic hepatitis and is closely associated with the development of cirrhosis and hepatocellular carcinoma (HCC). Previously, we demonstrated that the G1613A mutation in the HBV negative regulatory element (NRE) is a hotspot mutation in HCC patients. In this study, we further investigated the functional consequences of this mutation in the context of the full length HBV genome and its replication. We showed that the G1613A mutation significantly suppresses the secretion of e antigen (HBeAg) and enhances the synthesis of viral DNA, which is in consistence to our clinical result that the G1613A mutation associates with high viral load in chronic HBV carriers. To further investigate the molecular mechanism of the mutation, we performed the electrophoretic mobility shift assay with the recombinant RFX1 protein, a trans-activator that was shown to interact with the NRE of HBV. Intriguingly, RFX1 binds to the G1613A mutant with higher affinity than the wild-type sequence, indicating that the mutation possesses the trans-activating effect to the core promoter via NRE. The trans-activating effect was further validated by the enhancement of the core promoter activity after overexpression of RFX1 in liver cell line. In summary, our results suggest the functional consequences of the hotspot G1613A mutation found in HBV. We also provide a possible molecular mechanism of this hotspot mutation to the increased viral load of HBV carriers, which increases the risk to HCC

    Feed-Forward Neural Network Denoising Applied to Goldstone Solar System Radar Images

    No full text
    The study of Near-Earth Asteroids (NEA) is crucial for human safety. Small hazardous asteroids with small radar cross sections are not easy to detect, track, and characterize due to the small signal-to-noise ratio (SNR) of the radar echo. This manuscript describes the results obtained for the application of a feed-forward neural network (FFNN) denoising methodology to NEA data obtained from the Goldstone Solar System Radar (GSSR). We demonstrate an increase in the signal level of up to ×4 the original value—in terms of sigma above the mean noise—when applying the FFNN denoising technique to radar Z-score normalized Binary Phase Code (BPC) images. This improvement benefits better radar detection of NEAs in general. Reducing the noise background level for antennas that have lower aperture, e.g., 34 m dishes, enables the use of FFNN denoising to improve visual detections on those noisier conditions. In addition, reducing noise level benefits shorter integration times of the data to obtain adequate signal levels. When talking about detection of small bodies crossing the antenna beam, since the asteroids or debris can move across the beam quite fast, it is relevant to reduce the integration time to allow for an increased number of independent pieces of information crossing the target through the antenna beam. The increased distance between the signal level and the noise level enables a better detection of the small-bodies at shorter integration times and therefore would be very useful for the detection of objects in the cis-lunar space

    Feed-Forward Neural Network Denoising Applied to Goldstone Solar System Radar Images

    No full text
    The study of Near-Earth Asteroids (NEA) is crucial for human safety. Small hazardous asteroids with small radar cross sections are not easy to detect, track, and characterize due to the small signal-to-noise ratio (SNR) of the radar echo. This manuscript describes the results obtained for the application of a feed-forward neural network (FFNN) denoising methodology to NEA data obtained from the Goldstone Solar System Radar (GSSR). We demonstrate an increase in the signal level of up to ×4 the original value—in terms of sigma above the mean noise—when applying the FFNN denoising technique to radar Z-score normalized Binary Phase Code (BPC) images. This improvement benefits better radar detection of NEAs in general. Reducing the noise background level for antennas that have lower aperture, e.g., 34 m dishes, enables the use of FFNN denoising to improve visual detections on those noisier conditions. In addition, reducing noise level benefits shorter integration times of the data to obtain adequate signal levels. When talking about detection of small bodies crossing the antenna beam, since the asteroids or debris can move across the beam quite fast, it is relevant to reduce the integration time to allow for an increased number of independent pieces of information crossing the target through the antenna beam. The increased distance between the signal level and the noise level enables a better detection of the small-bodies at shorter integration times and therefore would be very useful for the detection of objects in the cis-lunar space

    On the Non-repudiation of Isogeny Based Signature Scheme

    No full text
    Part 3: CryptographyInternational audienceFor a digital signature scheme, unforgeability and non-repudiation are two main security requirements. In 2017, Galbraith, Petit and Silva presented GPS signature, an efficient isogeny based signature with a proven unforgeability. In this paper, we present a successful key substitution attack on GPS signature which threaten the non-repudiation of GPS signature. We also suggest how to prevent key substitution attack in general as well as our attack in this paper. We also present an example of our attack using Sage to illustrate isogenies of elliptic curves and our attack
    corecore