218 research outputs found

    The Lesser Known Challenge of Climate Change: Thermal Variance and Sex-Reversal in Vertebrates with Temperature-Dependent Sex Determination

    Get PDF
    Climate change is expected to disrupt biological systems. Particularly susceptible are species with temperature-dependent sex determination (TSD), as in many reptiles. While the potentially devastating effect of rising mean temperatures on sex ratios in TSD species is appreciated, the consequences of increased thermal variance predicted to accompany climate change remain obscure. Surprisingly, no study has tested if the effect of thermal variance around high-temperatures (which are particularly relevant given climate change predictions) has the same or opposite effects as around lower temperatures. Here we show that sex ratios of the painted turtle (Chrysemys picta) were reversed as fluctuations increased around low and high unisexual mean-temperatures. Unexpectedly, the developmental and sexual responses around female-producing temperatures were decoupled in a more complex manner than around male-producing values. Our novel observations are not fully explained by existing ecological models of development and sex determination, and provide strong evidence that thermal fluctuations are critical for shaping the biological outcomes of climate change

    Artificial Lighting as a Vector Attractant and Cause of Disease Diffusion

    Get PDF
    BACKGROUND: Traditionally, epidemiologists have considered electrification to be a positive factor. In fact, electrification and plumbing are typical initiatives that represent the integration of an isolated population into modern society, ensuring the control of pathogens and promoting public health. Nonetheless, electrification is always accompanied by night lighting that attracts insect vectors and changes people's behavior. Although this may lead to new modes of infection and increased transmission of insect-borne diseases, epidemiologists rarely consider the role of night lighting in their surveys. OBJECTIVE: We reviewed the epidemiological evidence concerning the role of lighting in the spread of vector-borne diseases to encourage other researchers to consider it in future studies. DISCUSSION: We present three infectious vector-borne diseases-Chagas, leishmaniasis, and malaria-and discuss evidence that suggests that the use of artificial lighting results in behavioral changes among human populations and changes in the prevalence of vector species and in the modes of transmission. CONCLUSION: Despite a surprising lack of studies, existing evidence supports our hypothesis that artificial lighting leads to a higher risk of infection from vector-borne diseases. We believe that this is related not only to the simple attraction of traditional vectors to light sources but also to changes in the behavior of both humans and insects that result in new modes of disease transmission. Considering the ongoing expansion of night lighting in developing countries, additional research on this subject is urgently needed.National Council for Scientific and Technological Development (CNPq), Brasilia, Brazi

    Clutch Frequency Affects the Offspring Size-Number Trade-Off in Lizards

    Get PDF
    Background: Studies of lizards have shown that offspring size cannot be altered by manipulating clutch size in species with a high clutch frequency. This raises a question of whether clutch frequency has a key role in influencing the offspring sizenumber trade-off in lizards. Methodology/Principal Findings: To test the hypothesis that females reproducing more frequently are less likely to tradeoff offspring size against offspring number, we applied the follicle ablation technique to female Eremias argus (Lacertidae) from Handan (HD) and Gonghe (GH), the two populations that differ in clutch frequency. Follicle ablation resulted in enlargement of egg size in GH females, but not in HD females. GH females switched from producing a larger number of smaller eggs in the first clutch to a smaller number of larger eggs in the second clutch; HD females showed a similar pattern of seasonal shifts in egg size, but kept clutch size constant between the first two clutches. Thus, the egg sizenumber trade-off was evident in GH females, but not in HD females. Conclusions/Significance: As HD females (mean = 3.1 clutches per year) reproduce more frequently than do GH females (mean = 1.6 clutches per year), our data therefore validate the hypothesis tested. Our data also provide an inference that maximization of maternal fitness could be achieved in females by diverting a large enough, rather than a higher-than-usual

    Biochemical indices and life traits of loggerhead turtles (Caretta caretta) from Cape Verde Islands

    Get PDF
    The loggerhead turtle (Caretta caretta) is an endangered marine reptile for whom assessing population health requires knowledge of demographic parameters such as individual growth rate. In Cape Verde, as within several populations, adult female loggerhead sea turtles show a size-related behavioral and trophic dichotomy. While smaller females are associated with oceanic habitats, larger females tend to feed in neritic habitats, which is reflected in their physiological condition and in their offspring. The ratio of RNA/DNA provides a measure of cellular protein synthesis capacity, which varies depending on changes in environmental conditions such as temperature and food availability. The purpose of this study was to evaluate the combined use of morphometric data and biochemical indices as predictors of the physiological condition of the females of distinct sizes and hatchlings during their nesting season and how temperature may influence the physiological condition on the offspring. Here we employed biochemical indices based on nucleic acid derived indices (standardized RNA/DNA ratio-sRD, RNA concentration and DNA concentration) in skin tissue as a potential predictor of recent growth rate in nesting females and hatchling loggerhead turtles. Our major findings were that the physiological condition of all nesting females (sRD) decreased during the nesting season, but that females associated with neritic habitats had a higher physiological condition than females associated with oceanic habitats. In addition, the amount of time required for a hatchling to right itself was negatively correlated with its physiological condition (sRD) and shaded nests produced hatchlings with lower sRD. Overall, our results showed that nucleic acid concentrations and ratios of RNA to DNA are an important tool as potential biomarkers of recent growth in marine turtles. Hence, as biochemical indices of instantaneous growth are likely temperature-, size- and age-dependent, the utility and validation of these indices on marine turtles stocks deserves further study.The authors thank the Cape Verde Ministry of Environment (General Direction for the Environment), INDP (National Fisheries Institution), the Canary Islands Government (D.G. Africa and D.G. Research and Universities), ICCM (Canarian Institution for Marine Sciences), the Andalusian Government (Andalusian Environmental Office) and AEGINA PROJECT (INTERREG IIIB) for funding and hosting them during this study. The authors also thank the European Regional Development Fund (ERDF) through the COMPETE - Operational Competitiveness Programme, and national funds through FCT - PEst-C/MAR/LA0015/2011 for supporting the biochemical analysis

    Resolving confusions about jarrah dieback - don’t forget the plants

    Get PDF
    The name jarrah dieback has been used for two different disorders, leading to considerable confusion. It was coined in the 1940s to describe the sudden death of groups of jarrah (Eucalyptus marginata) trees in south western Western Australia, which occurred on poorly drained sites, following exceptionally heavy rainfall. In the 1960s these sites were shown to be infested by Phytophthora cinnamomi and jarrah deaths were attributed to it, even though it was only isolated from 5 % of sampled trees. Also the definition of jarrah dieback was expanded to include deaths of many other plants on infested sites, from which P. cinnamomi was more readily isolated. Jarrah trees die from severe water deficiency, indicating problems with water conduction through roots. Xylem vessel diameters vary along roots, being narrow at the root collar, while distally they are larger, providing water storage. Jarrah transpires vigorously during summer, accessing water at depth on sites with deep soil, but being more dependent on internally stored water when root systems are shallower. Following waterlogging, sapwood vessels become blocked with tyloses, reducing both conductivity and potential water storage; such trees may have insufficient water reserves for summer survival. In jarrah P. cinnamomi is unlikely to cause water deficiency because sapwood invasion is rapidly contained in healthy roots. Recent investigations into P. cinnamomi invasion and host responses in other plants show that it can potentially cause a vascular wilt in Banksia spp. and chronic, symptomless infections in herbaceous plants. Susceptibility to waterlogging damage, and/or mortality resulting from infection by P. cinnamomi can only be clarified by detailed knowledge of the hosts and their vulnerabilities. This is essential for making diagnoses, devising management strategies, and avoiding the confusions of the past

    Male hatchling production in sea turtles from one of the world’s largest marine protected areas, the Chagos Archipelago

    Get PDF
    Incubation temperatures at turtle nest depths and implications for hatchling sex ratios of hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) nesting in the Chagos Archipelago, Western Indian Ocean are reported and compared to similar measurements at rookeries in the Atlantic and Caribbean. During 2012-2014, temperature loggers were buried at depths and in beach zones representative of turtle nesting sites in Diego Garcia. Data collected for 12,546 days revealed seasonal and spatial patterns of sand temperature. Depth effects were minimal, perhaps modulated by shade from vegetation. Coolest and warmest temperatures were recorded in the sites heavily shaded in vegetation during the austral winter and in sites partially shaded in vegetation during summer respectively. Overall, sand temperatures were relatively cool during the nesting seasons of both species which would likely produce fairly balanced hatchling sex ratios of 53% and 63% male hatchlings, respectively, for hawksbill and green turtles. This result contrasts with the predominantly high female skew reported for offspring at most rookeries around the globe and highlights how local beach characteristics can drive incubation temperatures. Our evidence suggests that sites characterized by heavy shade associated with intact natural vegetation are likely to provide conditions suitable for male hatchling production in a warming world

    Combining Phylogeography with Distribution Modeling: Multiple Pleistocene Range Expansions in a Parthenogenetic Gecko from the Australian Arid Zone

    Get PDF
    Phylogenetic and geographic evidence suggest that many parthenogenetic organisms have evolved recently and have spread rapidly. These patterns play a critical role in our understanding of the relative merits of sexual versus asexual reproductive modes, yet their interpretation is often hampered by a lack of detail. Here we present a detailed phylogeographic study of a vertebrate parthenogen, the Australian gecko Heteronotia binoei, in combination with statistical and biophysical modeling of its distribution during the last glacial maximum. Parthenogenetic H. binoei occur in the Australian arid zone and have the widest range of any known vertebrate parthenogen. They are broadly sympatric with their sexual counterparts, from which they arose via hybridization. We have applied nested clade phylogeographic, effective migration, and mismatch distribution analyses to mitochondrial DNA (mtDNA) sequences obtained for 319 individuals sampled throughout the known geographic ranges of two parthenogenetic mitochondrial lineages. These analyses provide strong evidence for past range expansion events from west to east across the arid zone, and for continuing eastward range expansion. Parthenogen formation and range expansion events date to the late Pleistocene, with one lineage expanding from the northwest of its present range around 240,000 years ago and the second lineage expanding from the far west around 70,000 years ago. Statistical and biophysical distribution models support these inferences of recent range expansion, with suitable climatic conditions during the last glacial maximum most likely limited to parts of the arid zone north and west of much of the current ranges of these lineages. Combination of phylogeographic analyses and distribution modeling allowed considerably stronger inferences of the history of this complex than either would in isolation, illustrating the power of combining complementary analytical approaches

    Turtle Carapace Anomalies: The Roles of Genetic Diversity and Environment

    Get PDF
    Background: Phenotypic anomalies are common in wild populations and multiple genetic, biotic and abiotic factors might contribute to their formation. Turtles are excellent models for the study of developmental instability because anomalies are easily detected in the form of malformations, additions, or reductions in the number of scutes or scales. Methodology/Principal Findings: In this study, we integrated field observations, manipulative experiments, and climatic and genetic approaches to investigate the origin of carapace scute anomalies across Iberian populations of the European pond turtle, Emys orbicularis. The proportion of anomalous individuals varied from 3 % to 69 % in local populations, with increasing frequency of anomalies in northern regions. We found no significant effect of climatic and soil moisture, or climatic temperature on the occurrence of anomalies. However, lower genetic diversity and inbreeding were good predictors of the prevalence of scute anomalies among populations. Both decreasing genetic diversity and increasing proportion of anomalous individuals in northern parts of the Iberian distribution may be linked to recolonization events from the Southern Pleistocene refugium. Conclusions/Significance: Overall, our results suggest that developmental instability in turtle carapace formation might be caused, at least in part, by genetic factors, although the influence of environmental factors affecting the developmental stability of turtle carapace cannot be ruled out. Further studies of the effects of environmental factors, pollutants an
    • …
    corecore