36 research outputs found

    Position- and Time-Dependent Arc Expression Links Neuronal Activity to Synaptic Plasticity During Epileptogenesis

    Get PDF
    In mesial temporal lobe epilepsy (mTLE) an initial precipitating injury can trigger aberrant wiring of neuronal circuits causing seizure activity. While circuit reorganization is known to be largely activity-dependent, the interactions between neuronal activity and synaptic plasticity during the development of mTLE remain poorly understood. Therefore, the present study aimed at delineating the spatiotemporal relationship between epileptic activity, activity-dependent gene expression and synaptic plasticity during kainic acid-induced epileptogenesis in mice. We show that during epileptogenesis the sclerotic hippocampus differed from non-sclerotic regions by displaying a consistently lower power of paroxysmal discharges. However, the power of these discharges steadily increased during epileptogenesis. This increase was paralleled by the upregulation of the activity-related cytoskeleton protein (Arc) gene expression in dentate granule cells (DGCs) of the sclerotic hippocampus. Importantly, we found that Arc mRNA-upregulating DGCs exhibited increased spine densities and spine sizes, but at the same time decreased AMPA-type glutamate receptor (AMPAR) densities. Finally, we show that in vivo optogenetic stimulation of DGC synapses evoked robust seizure activity in epileptic mice, but failed to induce dendritic translocation of Arc mRNA as under healthy conditions, supporting the theory of a breakdown of the dentate gate in mTLE. We conclude that during epileptogenesis epileptic activity emerges early and persists in the whole hippocampus, however, only the sclerotic part shows modulation of discharge amplitudes accompanied by plasticity of DGCs. In this context, we identified Arc as a putative mediator between seizure activity and synaptic plasticity

    Selective oxytocin receptor activation prevents prefrontal circuit dysfunction and social behavioral alterations in response to chronic prefrontal cortex activation in male rats

    Get PDF
    IntroductionSocial behavioral changes are a hallmark of several neurodevelopmental and neuropsychiatric conditions, nevertheless the underlying neural substrates of such dysfunction remain poorly understood. Building evidence points to the prefrontal cortex (PFC) as one of the key brain regions that orchestrates social behavior. We used this concept with the aim to develop a translational rat model of social-circuit dysfunction, the chronic PFC activation model (CPA).MethodsChemogenetic designer receptor hM3Dq was used to induce chronic activation of the PFC over 10 days, and the behavioral and electrophysiological signatures of prolonged PFC hyperactivity were evaluated. To test the sensitivity of this model to pharmacological interventions on longer timescales, and validate its translational potential, the rats were treated with our novel highly selective oxytocin receptor (OXTR) agonist RO6958375, which is not activating the related vasopressin V1a receptor.ResultsCPA rats showed reduced sociability in the three-chamber sociability test, and a concomitant decrease in neuronal excitability and synaptic transmission within the PFC as measured by electrophysiological recordings in acute slice preparation. Sub-chronic treatment with a low dose of the novel OXTR agonist following CPA interferes with the emergence of PFC circuit dysfunction, abnormal social behavior and specific transcriptomic changes.DiscussionThese results demonstrate that sustained PFC hyperactivity modifies circuit characteristics and social behaviors in ways that can be modulated by selective OXTR activation and that this model may be used to understand the circuit recruitment of prosocial therapies in drug discovery

    Early tissue damage and microstructural reorganization predict disease severity in experimental epilepsy

    Get PDF
    Mesial temporal lobe epilepsy (mTLE) is the most common focal epilepsy in adults and is often refractory to medication. So far, resection of the epileptogenic focus represents the only curative therapy. It is unknown whether pathological processes preceding epilepsy onset are indicators of later disease severity. Using longitudinal multi-modal MRI, we monitored hippocampal injury and tissue reorganization during epileptogenesis in a mouse mTLE model. The prognostic value of MRI biomarkers was assessed by retrospective correlations with pathological hallmarks Here, we show for the first time that the extent of early hippocampal neurodegeneration and progressive microstructural changes in the dentate gyrus translate to the severity of hippocampal sclerosis and seizure burden in chronic epilepsy. Moreover, we demonstrate that structural MRI biomarkers reflect the extent of sclerosis in human hippocampi. Our findings may allow an early prognosis of disease severity in mTLE before its first clinical manifestations, thus expanding the therapeutic window

    Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32

    Get PDF
    Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% and account for 20-30% of all epilepsies. Despite their high heritability of 80%, the genetic factors predisposing to GGEs remain elusive. To identify susceptibility variants shared across common GGE syndromes, we carried out a two-stage genome-wide association study (GWAS) including 3020 patients with GGEs and 3954 controls of European ancestry. To dissect out syndrome-related variants, we also explored two distinct GGE subgroups comprising 1434 patients with genetic absence epilepsies (GAEs) and 1134 patients with juvenile myoclonic epilepsy (JME). Joint Stage-1 and 2 analyses revealed genome-wide significant associations for GGEs at 2p16.1 (rs13026414, Pmeta = 2.5 × 10−9, OR[T] = 0.81) and 17q21.32 (rs72823592, Pmeta = 9.3 × 10−9, OR[A] = 0.77). The search for syndrome-related susceptibility alleles identified significant associations for GAEs at 2q22.3 (rs10496964, Pmeta = 9.1 × 10−9, OR[T] = 0.68) and at 1q43 for JME (rs12059546, Pmeta = 4.1 × 10−8, OR[G] = 1.42). Suggestive evidence for an association with GGEs was found in the region 2q24.3 (rs11890028, Pmeta = 4.0 × 10−6) nearby the SCN1A gene, which is currently the gene with the largest number of known epilepsy-related mutations. The associated regions harbor high-ranking candidate genes: CHRM3 at 1q43, VRK2 at 2p16.1, ZEB2 at 2q22.3, SCN1A at 2q24.3 and PNPO at 17q21.32. Further replication efforts are necessary to elucidate whether these positional candidate genes contribute to the heritability of the common GGE syndrome

    16p11.2 600 kb Duplications confer risk for typical and atypical Rolandic epilepsy

    Get PDF
    Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65 046 European population controls (5/393 cases versus 32/65 046 controls; Fisher's exact test P = 2.83 × 10−6, odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10−4). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical R

    Determining crystal structures through crowdsourcing and coursework

    Get PDF
    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality

    Auditory brainstem responses are resistant to pharmacological modulation in Sprague Dawley wild-type and Neurexin1α knockout rats

    No full text
    Sensory processing in the auditory brainstem can be studied with auditory brainstem responses (ABRs) across species. There is, however, a limited understanding of ABRs as tools to assess the effect of pharmacological interventions. Therefore, we set out to understand how pharmacological agents that target key transmitter systems of the auditory brainstem circuitry affect ABRs in rats. Given previous studies, demonstrating that Nrxn1 alpha KO Sprague Dawley rats show substantial auditory processing deficits and altered sensitivity to GABAergic modulators, we used both Nrxn1 alpha KO and wild-type littermates in our study. First, we probed how different commonly used anesthetics (isoflurane, ketamine/xylazine, medetomidine) affect ABRs. In the next step, we assessed the effects of different pharmacological compounds (diazepam, gaboxadol, retigabine, nicotine, baclofen, and bitopertin) either under isoflurane or medetomidine anesthesia. We found that under our experimental conditions, ABRs are largely unaffected by diverse pharmacological modulation. Significant modulation was observed with (i) nicotine, affecting the late ABRs components at 90 dB stimulus intensity under isoflurane anesthesia in both genotypes and (ii) retigabine, showing a slight decrease in late ABRs deflections at 80 dB stimulus intensity, mainly in isoflurane anesthetized Nrxn1 alpha KO rats. Our study suggests that ABRs in anesthetized rats are resistant to a wide range of pharmacological modulators, which has important implications for the applicability of ABRs to study auditory brainstem physiology.ISSN:1471-220

    Environmental and structural factors influencing algal communities in small streams and ditches in central Germany

    No full text
    The suspended algal fraction in small lotic waterbodies has rarely been investigated as the ecological importance was questioned due to low abundances. Recent findings suggest, that substantial riverine plankton communities can establish in small lotic waterbodies. The gap of knowledge concerning the composition of suspended algal assemblages and influential factors determining their composition is addressed in this study by monitoring suspended and attached algal communities over a two year period in agriculturally influenced small lotic waterbodies using delayed fluorescence spectroscopy. A quantitative comparison of suspended and attached algae indicated, that suspended algae exceeded attached algal biomass in late summer and early autumn. Redundancy analyses and corresponding generalized linear models indicated that the suspended algal groups were most influenced by nutrients, temperature and velocity, whereas light regime was of minor importance. The attached algal groups were affected by the same factors, however with differing intensity. Regional factors, such as season, were identified as the major gradients along which both algal fractions varied, inducing temporal synchronous algal assemblages. This work represents a contribution towards a better understanding of algal ecology specifically suspended algae in small lotic waterbodies
    corecore