133 research outputs found

    Evolutionarily conserved human targets of adenosine to inosine RNA editing

    Get PDF
    A-to-I RNA editing by ADARs is a post-transcriptional mechanism for expanding the proteomic repertoire. Genetic recoding by editing was so far observed for only a few mammalian RNAs that are predominantly expressed in nervous tissues. However, as these editing targets fail to explain the broad and severe phenotypes of ADAR1 knockout mice, additional targets for editing by ADARs were always expected. Using comparative genomics and expressed sequence analysis, we identified and experimentally verified four additional candidate human substrates for ADAR-mediated editing: FLNA, BLCAP, CYFIP2 and IGFBP7. Additionally, editing of three of these substrates was verified in the mouse while two of them were validated in chicken. Interestingly, none of these substrates encodes a receptor protein but two of them are strongly expressed in the CNS and seem important for proper nervous system function. The editing pattern observed suggests that some of the affected proteins might have altered physiological properties leaving the possibility that they can be related to the phenotypes of ADAR1 knockout mice

    German Multicenter Study Analyzing Antimicrobial Activity of Ceftazidime-Avibactam of Clinical Meropenem-Resistant Pseudomonas aeruginosa Isolates Using a Commercially Available Broth Microdilution Assay

    Get PDF
    Multidrug resistance is an emerging healthcare issue, especially concerning Pseudomonas aeruginosa. In this multicenter study, P. aeruginosa isolates with resistance against meropenem detected by routine methods were collected and tested for carbapenemase production and susceptibility against ceftazidime-avibactam. Meropenem-resistant isolates of P. aeruginosa from various clinical materials were collected at 11 tertiary care hospitals in Germany from 2017–2019. Minimum inhibitory concentrations (MICs) were determined via microdilution plates (MICRONAUT-S) of ceftazidime-avibactam and meropenem at each center. Detection of the presence of carbapenemases was performed by PCR or immunochromatography. For meropenem-resistant isolates (n = 448), the MIC range of ceftazidime-avibactam was 0.25–128 mg/L, MIC90 was 128 mg/L and MIC50 was 16 mg/L. According to EUCAST clinical breakpoints, 213 of all meropenem-resistant P. aeruginosa isolates were categorized as susceptible (47.5%) to ceftazidime-avibactam. Metallo-β-lactamases (MBL) could be detected in 122 isolates (27.3%). The MIC range of ceftazidime-avibactam in MBL-positive isolates was 4–128 mg/L, MIC90 was >128 mg/L and MIC50 was 32 mg/L. There was strong variation in the prevalence of MBL-positive isolates among centers. Our in vitro results support ceftazidimeavibactam as a treatment option against infections caused by meropenem-resistant, MBL-negative P. aeruginosa

    Managing Diversity : The Challenges of Inter-University Cooperation in Sustainability Education

    Get PDF
    One of the main challenges in sustainability discourse is its multifaceted nature often requiring that many different disciplines must cooperate in order to achieve progress. This issue also concerns sustainability education. In the article, we highlighted the experiences from the international cooperation of university teachers and researchers with highly diverse professional backgrounds who worked together on developing educational materials for university students in sustainability-oriented courses. The study is based on qualitative, participatory evaluation research, applying two rounds of open-ended questionnaires distributed to the same respondents (n = 18). For the analysis, we used the open-coding procedure for identifying the main categories. The results show some of the opportunities and barriers that emerged in the process of this cooperation. In particular, we discuss the issues related to the high heterogeneity of the group, such as the clashes of the different perspectives on the topics covered, group dynamics issues, trust, facilitation challenges, and also opportunities that such heterogeneity offers. We highlight the importance of open reflectivity in sustainability-oriented educational projects as the key to their successful implementation. Finally, we believe that results of this participatory study are useful in designing new projects aiming at further improvement of academic education in sustainability and sustainable development

    A structural determinant required for RNA editing

    Get PDF
    RNA editing by adenosine deaminases acting on RNAs (ADARs) can be both specific and non-specific, depending on the substrate. Specific editing of particular adenosines may depend on the overall sequence and structural context. However, the detailed mechanisms underlying these preferences are not fully understood. Here, we show that duplex structures mimicking an editing site in the Gabra3 pre-mRNA unexpectedly fail to support RNA editing at the Gabra3 I/M site, although phylogenetic analysis suggest an evolutionarily conserved duplex structure essential for efficient RNA editing. These unusual results led us to revisit the structural requirement for this editing by mutagenesis analysis. In vivo nuclear injection experiments of mutated editing substrates demonstrate that a non-conserved structure is a determinant for editing. This structure contains bulges either on the same or the strand opposing the edited adenosine. The position of these bulges and the distance to the edited base regulate editing. Moreover, elevated folding temperature can lead to a switch in RNA editing suggesting an RNA structural change. Our results indicate the importance of RNA tertiary structure in determining RNA editing

    Glutamine synthetase expression rescues human dendritic cell survival in a glutamine-deprived environment

    Get PDF
    Introduction: Glutamine deficiency is a well-known feature of the tumor environment. Here we analyzed the impact of glutamine deprivation on human myeloid cell survival and function. Methods: Different types of myeloid cells were cultured in the absence or presence of glutamine and/or with L-methionine-S-sulfoximine (MSO), an irreversible glutamine synthetase (GS) inhibitor. GS expression was analyzed on mRNA and protein level. GS activity and the conversion of glutamate to glutamine by myeloid cells was followed by 13C tracing analyses. Results: The absence of extracellular glutamine only slightly affected postmitotic human monocyte to dendritic cell (DC) differentiation, function and survival. Similar results were obtained for monocyte-derived macrophages. In contrast, proliferation of the monocytic leukemia cell line THP-1 was significantly suppressed. While macrophages exhibited high constitutive GS expression, glutamine deprivation induced GS in DC and THP-1. Accordingly, proliferation of THP-1 was rescued by addition of the GS substrate glutamate and 13C tracing analyses revealed conversion of glutamate to glutamine. Supplementation with the GS inhibitor MSO reduced the survival of DC and macrophages and counteracted the proliferation rescue of THP-1 by glutamate. Discussion: Our results show that GS supports myeloid cell survival in a glutamine poor environment. Notably, in addition to suppressing proliferation and survival of tumor cells, the blockade of GS also targets immune cells such as DCs and macrophages

    Divergent Roles of Salmonella Pathogenicity Island 2 and Metabolic Traits during Interaction of S. enterica Serovar Typhimurium with Host Cells

    Get PDF
    The molecular mechanisms of virulence of the gastrointestinal pathogen Salmonella enterica are commonly studied using cell culture models of infection. In this work, we performed a direct comparison of the interaction of S. enterica serovar Typhimurium (S. Typhimurium) with the non-polarized epithelial cell line HeLa, the polarized cell lines CaCo2, T84 and MDCK, and macrophage-like RAW264.7 cells. The ability of S. Typhimurium wild-type and previously characterized auxotrophic mutant strains to enter host cells, survive and proliferate within mammalian cells and deploy the Salmonella Pathogenicity Island 2-encoded type III secretion system (SPI2-T3SS) was quantified. We found that the entry of S. Typhimurium into polarized cells was much more efficient than entry into non-polarized cells or phagocytic uptake. While SPI2-T3SS dependent intracellular proliferation was observed in HeLa and RAW cells, the intracellular replication in polarized cells was highly restricted and not affected by defective SPI2-T3SS. The contribution of aromatic amino acid metabolism and purine biosynthesis to intracellular proliferation was distinct in the various cell lines investigated. These observations indicate that the virulence phenotypes of S. Typhimurium are significantly affected by the cell culture model applied
    corecore