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Abstract: Multidrug resistance is an emerging healthcare issue, especially concerning Pseudomonas aerug-
inosa. In this multicenter study, P. aeruginosa isolates with resistance against meropenem detected by
routine methods were collected and tested for carbapenemase production and susceptibility against
ceftazidime-avibactam. Meropenem-resistant isolates of P. aeruginosa from various clinical materials
were collected at 11 tertiary care hospitals in Germany from 2017–2019. Minimum inhibitory concen-
trations (MICs) were determined via microdilution plates (MICRONAUT-S) of ceftazidime-avibactam
and meropenem at each center. Detection of the presence of carbapenemases was performed by
PCR or immunochromatography. For meropenem-resistant isolates (n = 448), the MIC range of
ceftazidime-avibactam was 0.25–128 mg/L, MIC90 was 128 mg/L and MIC50 was 16 mg/L. Ac-
cording to EUCAST clinical breakpoints, 213 of all meropenem-resistant P. aeruginosa isolates were
categorized as susceptible (47.5%) to ceftazidime-avibactam. Metallo-β-lactamases (MBL) could be
detected in 122 isolates (27.3%). The MIC range of ceftazidime-avibactam in MBL-positive isolates
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was 4–128 mg/L, MIC90 was >128 mg/L and MIC50 was 32 mg/L. There was strong variation in
the prevalence of MBL-positive isolates among centers. Our in vitro results support ceftazidime-
avibactam as a treatment option against infections caused by meropenem-resistant, MBL-negative
P. aeruginosa.

Keywords: ceftazidime-avibactam; susceptibility testing; carbapenemases

1. Introduction

Multidrug-resistant (MDR) Gram-negative infections are emerging worldwide. Multi-
resistant and extensively drug-resistant Pseudomonas aeruginosa phenotypes are a major
cause for nosocomial, difficult-to-treat infections [1]. The novel beta-lactam/beta-lactamase
inhibitor combinations ceftolozane-tazobactam and ceftazidime-avibactam (CZA) show
high in vitro activity against P. aeruginosa, including ceftazidime- and carbapenem-resistant
isolates [2,3]. Avibactam, as a novel non-β-lactam β-lactamase inhibitor, targets the active
site of serine β-lactamases, resulting in the inhibition of extended-spectrum β-lactamases,
AmpC β-lactamases and class A/D carbapenemases (e.g., KPC and OXA-48) [4]. However,
as metallo-β-lactamases (MBL) production is one of the most common mechanisms of
carbapenem-resistance in P. aeruginosa, ceftolozane-tazobactam and CZA are not able to
inhibit P. aeruginosa isolates carrying MBLs [5].

In a recent European multicenter study including 1673 MDR P. aeruginosa isolates,
CZA showed antipseudomonal activity in 71.7% [6]. This finding highlights the need for
routine antimicrobial susceptibility testing of the second-generation β-lactam/β-lactamase
inhibitor combinations in MDR phenotypes [7]. Gradient or disk diffusion tests for CZA
have been evaluated in comparison to the broth microdilution (BMD) method. While disk
diffusion testing tends to overestimate resistance, the categorical agreement for the gradient
tests was over 90% compared to BMD in most studies [8–10].

The study presented here was done in collaboration with the microbiology laboratories
of 11 German tertiary care hospitals with the intention to investigate the following objec-
tives: (a) implementation of a standardized platform for susceptibility testing based on the
BMD method in routine diagnostics to determine the minimum inhibitory concentrations
for ceftazidime-avibactam; (b) analyzing the CZA in-vitro activity against meropenem
(MEM)-resistant P. aeruginosa isolates; (c) evaluation of the most prevalent carbapenemases,
including MBLs, in MEM-resistant P. aeruginosa isolates in all participating centers and
correlating the corresponding CZA MICs.

2. Results

In total, 448 MEM-resistant isolates, with varying numbers in the respective study
centers (Table 1), were included in this study. Further, testing for MBL revealed different
abundances in participating institutions.

The overall prevalence of carbapenemase genes among the included isolates was 28%
(126/448), with four identifications of non-MBL carbapenemases (OXA-48, n = 2; KPC-2,
n = 1; GES, n = 1). A wide variation in the proportion of MBL-positive isolates was observed
among individual centers, ranging from 0 to 75% (Table 1). Some centers had low amounts
of MBL-positive P. aeruginosa (Table 1; centers A, I and K), whereas in other centers high
proportions were identified (Table 1, centers E and G). In 91% of the MBL-positive isolates,
Verona integron-encoded metallo-β-lactamase (VIM) was detected. In the remaining 9%, an
Imipenemase (IMP) or the New Delhi metallo-β-lactamase (NDM) were found. The origins
of MBL-positive isolates were from respiratory specimens (23.8%), urine (19.7%), wound
swabs (9.8%), blood culture (7.4%), rectal swab (3.2%) or not specified materials (36.1%).
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Table 1. Proportion of metallo-β-lactamase (MBL)-positive isolates to total number of meropenem-
resistant isolates by center.

Center Total Isolates MBL-Positive (%) VIM-Positive IMP-Positive NDM-Positive

A 63 4 (6.3) 3 0 1

B 62 24 (38.7) 18 4 2

C 31 4 (12.9) 4 0 0

D 14 3 (21.4) 3 0 0

E 44 33 (75.0) 33 0 0

F 43 11 (26.6) 11 0 0

G 36 23 (63.9) 19 4 0

H 28 8 (28.6) 8 0 0

I 16 1 (6.3) 1 0 0

J 62 11 (17.7) 11 0 0

K 49 0 (0.0) 0 0 0

∑ 11 ∑ 448 ∑ 122 ∑ 111 ∑ 8 ∑ 3

Abbreviations: MBL: metallo-β-lactamase; VIM: Verona integron-encoded metallo-β-lactamase; IMP: Imipene-
mase; NDM: New Delhi metallo-β-lactamase.

The MICs for CZA are shown for MBL-positive and MBL-negative subgroups in
Figure 1.
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Figure 1. Distribution of antibiotic minimum inhibitory concentrations (MICs) for ceftazidime-avi-
bactam of meropenem-resistant Pseudomonas aeruginosa isolates. For antimicrobial susceptibility 
testing purposes, the concentration of avibactam was fixed at 4 mg/L. The pointed line depicts the 
CZA-resistance breakpoint (susceptible ≤ 8). (A) shows the MIC distribution for MBL-positive iso-
lates; (B) shows the MIC distribution for MBL-negative isolates. 

As shown in Figure 1, the CZA MICs of MBL-positive isolates (Figure 1A) were 
higher compared to MICs of MBL-negative isolates (Figure 1B). The CZA MIC90 was de-
termined at 128 mg/L and the CZA MIC50 at 16 mg/L. Overall, 213 of all MEM-resistant P. 
aeruginosa isolates were categorized as susceptible (47.5%) to CZA. For the group of MBL-
positive isolates, the CZA MIC90 was >128 mg/L and MIC50 was at 32 mg/L. Of all MBL-
positive P. aeruginosa isolates, nine isolates carrying the VIM gene were categorized as 
susceptible (7.4%) to CZA. In the 326 MBL-negative isolates, the MIC90 of CZA was 32 
mg/L and the MIC50 was at 8 mg/L. Further, 204 of all MBL-negative P. aeruginosa isolates 
were categorized as susceptible (62.6%) to CZA. 

3. Discussion 

Figure 1. Distribution of antibiotic minimum inhibitory concentrations (MICs) for ceftazidime-
avibactam of meropenem-resistant Pseudomonas aeruginosa isolates. For antimicrobial susceptibility
testing purposes, the concentration of avibactam was fixed at 4 mg/L. The pointed line depicts
the CZA-resistance breakpoint (susceptible ≤ 8). (A) shows the MIC distribution for MBL-positive
isolates; (B) shows the MIC distribution for MBL-negative isolates.

As shown in Figure 1, the CZA MICs of MBL-positive isolates (Figure 1A) were higher
compared to MICs of MBL-negative isolates (Figure 1B). The CZA MIC90 was determined
at 128 mg/L and the CZA MIC50 at 16 mg/L. Overall, 213 of all MEM-resistant P. aeruginosa
isolates were categorized as susceptible (47.5%) to CZA. For the group of MBL-positive
isolates, the CZA MIC90 was >128 mg/L and MIC50 was at 32 mg/L. Of all MBL-positive
P. aeruginosa isolates, nine isolates carrying the VIM gene were categorized as susceptible
(7.4%) to CZA. In the 326 MBL-negative isolates, the MIC90 of CZA was 32 mg/L and
the MIC50 was at 8 mg/L. Further, 204 of all MBL-negative P. aeruginosa isolates were
categorized as susceptible (62.6%) to CZA.
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3. Discussion

A recent study investigated the antimicrobial resistance of 2588 P. aeruginosa isolates
over a period of 20 years. A significant increase in multidrug-resistant over time was
reported, indicating the need for novel therapeutic opportunities [11]. In this German
multicentre study, 448 MEM-resistant P. aeruginosa isolates from clinical specimen were
tested against CZA using the standardised susceptibility testing method MICRONAUT-S
(MERLIN Diagnostika GmbH, Bornheim, Germany), based on broth microdilution plates.
Another recent study from Germany investigated 72 ceftazidime-resistant P. aeruginosa
isolates towards CZA, of which 33 were resistant against imipenem and meropenem [12]. In
total, 54.8% of ceftazidime and carbapenem-resistant P. aeruginosa isolates were susceptible
to CZA, which is comparable to our results. In a German monocentric study, 112 XDR P.
aeruginosa isolates had a susceptibility rate of 49.1% to CZA [9].

We found an MBL in 27% of isolates, with up to 75% in one centre. Carbapenemase
production in the isolates varied geographically on a national level but did not show a
specific trend towards the north/south or the east/west direction. Similarly, a recent
multi-national study (ERACE Global Surveillance program) analysed 807 carbapenem-
resistant P. aeruginosa isolates. In total, 33% carbapenemase-positive isolates were found
via phenotypic methods [13]. The Middle East and Africa showed the highest resistance
rates, with 43% and 66% for CZA, respectively. In contrast, a study from the US from 2017
found only 4% of VIM in 290 meropenem-resistant P. aeruginosa isolates, indicating a high
geographic heterogeneity of MBL-positive P. aeruginosa [14].

Easy-to-perform and reliable susceptibility testing of P. aeruginosa is important for
diagnostic microbiological laboratories and the appropriate management of infectious
diseases. Despite commercially available gradient and disk diffusion tests, semi-automated
platforms are now able to provide CZA MICs. Studies have shown that gradient diffusion
tests demonstrated good accuracy compared to BMD, whereas disk diffusion showed
higher MICs [9,15]. Recently, the performance of the Vitek2 (bioMerieux, Nürtingen, Ger-
many) system was analysed for reliability of CZA susceptibility testing [16]. A rate of
18.1% of misclassification of susceptible strains was reported, and it was concluded that
for Vitek2 and MIC gradient tests a control with the broth microdilution (BMD) method
is needed when MIC values are close to a breakpoint [15]. Here, we only used one com-
mercially available method for susceptibility testing based on microdilution, which does
not allow any interpretation of the reliability of MICs in comparison to the gold standard
BMD method according to EUCAST. However, in comparison with the results from other
German surveillance studies based on the BMD method, our data are comparable [11,14].
Further, a recent study presented comparable good performance and trustworthy results for
accurate MIC determination of CZA of another commercially available method (MicroScan
WalkAway, Beckman Coulter, Brea, CA, USA) [17].

To the best of our knowledge, this is the first German multicentre study investigating
CZA MICs with a high number of meropenem-resistant isolates. However, the present
study has several limitations. Whole-genome-sequencing (WGS) to investigate clonal
relatedness for excluding multi-copy strains with the same genetic background was not
part of the study. Furthermore, exploring the detailed resistance mechanisms of the isolates
(e.g., efflux pumps) by WGS to investigate specific in-vitro activities of CZA would have
improved the work. Further, the data only reflects in-vitro testing and does not reflect
in-vivo susceptibility or treatment recommendations. However, the presented multicentre
study depicts a sound image of carbapenem-resistant MDR P. aeruginosa in several tertiary
care hospitals and further outlines possibilities for a routine surveillance test strategy
for Germany.

In conclusion, CZA exhibits a high level of activity against meropenem-resistant,
metallo-β-lactamase-negative P. aeruginosa in Germany. The prevalence of MBLs differed
in the contributing centres, highlighting the need for accurate antimicrobial susceptibility
testing.
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4. Materials and Methods
4.1. Bacterial Isolates

All clinical samples were subjected to a conventional microbiological diagnosis before
use. The study did not use demographic data about patients, nor did it result in any
additional constraints for the patients. Because of the retrospective nature of the study, all
data were anonymously analysed without the need for patient consent. All procedures and
methods were carried out in accordance with approved guidelines.

In total, 640 non-duplicate clinical isolates of P. aeruginosa with phenotypic resistance
against meropenem as inclusion criterion were collected between 2017 and 2019 from 11
German tertiary care hospitals. Species identification was performed at all centers by
matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry
(Bruker Daltonik GmbH, Bremen, Germany, or bioMerieux, Nürtingen, Germany).

4.2. PCR- and Immunochromatography Screening for Resistance Genes

Detection of carbapenemases was done by multiplex PCR or immunochromatography-
based tests according to the manufacturer’s recommendations at each center.

Center A: in-house PCR including NDM, KPC, VIM, IMP, OXA-23, OXA-48, OXA-
58, OXA-72; center B: in-house PCR including VIM, OXA-48, NDM, KPC, GES; center
C: PCR Xpert Carba-R including NDM, IMP-1, OXA-48, VIM, KPC (v2, Cepheid GmbH,
Krefeld, Germany) and immunochromatography RESIST-4 O.K.N.V. including VIM, NDM,
KPC, OXA-48-like (Coris BioConcept, Gembloux, Belgium); center D: NG-Test CARBA 5
including KPC, OXA-48-like, VIM, IMP, NDM (NG Biotech, Guipry, France) and in-house
PCR including VIM, NDM, OXA-48, KPC, IMP; center E: NG-Test CARBA 5 including KPC,
OXA-48-like, VIM, IMP, NDM (NG Biotech, Guipry, France); center F: real-time PCR Xpert
Carba-R including NDM, OXA-48, VIM, KPC (v2, Cepheid, Sunnyvale, CA, USA); center
G: eazyplex Superbug basic including KPC, NDM, VIM, OXA-48-like, OXA-181 (Amplex
Diagnostics GmbH, Gießen, Germany); center H: AID Carbapenemase PCR Kit including
AIM, BIC, DIM, GIM, IMI, IMP, KPC, NDM-1, NMC-A, OXA-48, SIM, SPM, VIM (AID
Autoimmun Diagnostika GmbH, Strassberg, Germany); center I: in-house assay including
IMP, VIM, NDM, OXA-48-like, GES, NMC-A/IMI, BIC, SME; center J: Allplex-DR including
IMP, KPC, NDM, OXA-48, VIM (Seegene Germany GmbH, Düsseldorf, Germany); center K:
eazyplex Superbug CRE including KPC, NDM, VIM, OXA-48, OXA-181 CTX-M1, CTX-M9
(Amplex Diagnostics GmbH, Gießen, Germany).

4.3. Antimicrobial Susceptibility Testing

The MICs were determined by the BMD method using the MICRONAUT-S system
(MERLIN Diagnostika GmbH, Bornheim, Germany) containing two-fold dilutions of CZA
(0.125/4–128/4 mg/L) and of MEM (0.0625–128 mg/L) in each center, according to the
manufacturer´s recommendations. After 18–24 h, incubation plates were read digitally
with a photometer. The P. aeruginosa ATCC strain 27853 was used as quality control strain.
CLSI and EUCAST clinical breakpoints (v. 12.0, 2022) were applied for interpretation of
MICs (MEM: S ≤ 2; R > 8 mg/L; CZA: R > 8 mg/L).

In the final analysis, only confirmed MEM-resistant P. aeruginosa isolates were included.
The numbers of isolates provided by each participating center are shown in Table 1.
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