3,437 research outputs found

    Enhanced transmission versus localization of a light pulse by a subwavelength metal slit: Can the pulse have both characteristics?

    Full text link
    The existence of resonant enhanced transmission and collimation of light waves by subwavelength slits in metal films [for example, see T.W. Ebbesen et al., Nature (London) 391, 667 (1998) and H.J. Lezec et al., Science, 297, 820 (2002)] leads to the basic question: Can a light be enhanced and simultaneously localized in space and time by a subwavelength slit? To address this question, the spatial distribution of the energy flux of an ultrashort (femtosecond) wave-packet diffracted by a subwavelength (nanometer-size) slit was analyzed by using the conventional approach based on the Neerhoff and Mur solution of Maxwell's equations. The results show that a light can be enhanced by orders of magnitude and simultaneously localized in the near-field diffraction zone at the nm- and fs-scales. Possible applications in nanophotonics are discussed.Comment: 5 figure

    STREAM: Static Thermodynamic REgulAtory Model of transcription

    Get PDF
    Motivation: Understanding the transcriptional regulation of a gene in detail is a crucial step towards uncovering and ultimately utilizing the regulatory grammar of the genome. Modeling transcriptional regulation using thermodynamic equations has become an increasingly important approach towards this goal

    Fusion-Fission of 16O+197Au at Sub-Barrier Energies

    Get PDF
    The recent discovery of heavy-ion fusion hindrance at far sub-barrier energies has focused much attention on both experimental and theoretical studies of this phenomenon. Most of the experimental evidence comes from medium-heavy systems such as Ni+Ni to Zr+Zr, for which the compound system decays primarily by charged-particle evaporation. In order to study heavier systems, it is, however, necessary to measure also the fraction of the decay that goes into fission fragments. In the present work we have, therefore, measured the fission cross section of 16O+197Au down to unprecedented far sub-barrier energies using a large position sensitive PPAC placed at backward angles. The preliminary cross sections will be discussed and compared to earlier studies at near-barrier energies. No conclusive evidence for sub-barrier hindrance was found, probably because the measurements were not extended to sufficiently low energies.Comment: Fusion06 - Intl. Conf. on Reaction Mechanisms and Nuclear Structure at the Coulomb Barrier, San Servolo, Venezia, Italy, March 19-223, 2006 5 pages, 4 figure

    Spectroscopy of 194^{194}Po

    Get PDF
    Prompt, in-beam γ\gamma rays following the reaction 170^{170}Yb + 142 MeV 28^{28}Si were measured at the ATLAS facility using 10 Compton-suppressed Ge detectors and the Fragment Mass Analyzer. Transitions in 194^{194}Po were identified and placed using γ\gamma-ray singles and coincidence data gated on the mass of the evaporation residues. A level spectrum up to J\approx10\hbar was established. The structure of 194^{194}Po is more collective than that observed in the heavier polonium isotopes and indicates that the structure has started to evolve towards the more collective nature expected for deformed nuclei.Comment: 8 pages, revtex 3.0, 4 figs. available upon reques

    Electromagnetic properties of non-Dirac particles with rest spin 1/2

    Full text link
    We resolve a number of questions related to an analytic description of electromagnetic form factors of non-Dirac particles with the rest spin 1/2. We find the general structure of a matrix antisymmetric tensor operator. We obtain two recurrence relations for matrix elements of finite transformations of the proper Lorentz group and explicit formulas for a certain set of such elements. Within the theory of fields with double symmetry, we discuss writing the components of wave vectors of particles in the form of infinite continued fractions. We show that for Q20.5Q^{2} \leq 0.5 (GeV/c)2^{2}, where Q2Q^{2} is the transferred momentum squared, electromagnetic form factors that decrease as Q2Q^{2} increases and are close to those experimentally observed in the proton can be obtained without explicitly introducing an internal particle structure.Comment: 18 pages, 2 figure

    The atomic lensing model: new opportunities for atom-by-atom metrology of heterogeneous nanomaterials

    Full text link
    The atomic lensing model has been proposed as a promising method facilitating atom-counting in heterogeneous nanocrystals [KHW van den Bos et. al, Phys. Rev. Lett. 116 (2016) 246101] Here, image simulations will validate the model, which describes dynamical diffraction as a superposition of individual atoms focussing the incident electrons. It will be demonstrated that the model is reliable in the annular dark field regime for crystals having columns containing dozens of atoms. By using the principles of statistical detection theory, it will be shown that this model gives new opportunities for detecting compositional differences

    Probing the single-particle character of rotational states in 19^{19}F using a short-lived isomeric beam

    Get PDF
    A beam containing a substantial component of both the Jπ=5+J^{\pi}=5^+, T1/2=162T_{1/2}=162 ns isomeric state of 18^{18}F and its 1+1^+, 109.77-min ground state has been utilized to study members of the ground-state rotational band in 19^{19}F through the neutron transfer reaction (d(d,p)p) in inverse kinematics. The resulting spectroscopic strengths confirm the single-particle nature of the 13/2+^+ band-terminating state. The agreement between shell-model calculations, using an interaction constructed within the sdsd shell, and our experimental results reinforces the idea of a single-particle/collective duality in the descriptions of the structure of atomic nuclei
    corecore