32 research outputs found

    DNA damage-induced histone H1 ubiquitylation is mediated by HUWE1 and stimulates the RNF8-RNF168 pathway

    Get PDF
    The DNA damage response (DDR), comprising distinct repair and signalling pathways, safeguards genomic integrity. Protein ubiquitylation is an important regulatory mechanism of the DDR. To study its role in the UV-induced DDR, we characterized changes in protein ubiquitylation following DNA damage using quantitative di-Gly proteomics. Interestingly, we identified multiple sites of histone H1 that are ubiquitylated upon UV-damage. We show that UV-dependent histone H1 ubiquitylation at multiple lysines is mediated by the E3-ligase HUWE1. Recently, it was shown that poly-ubiquitylated histone H1 is an important signalling intermediate in the double strand break response. This poly-ubiquitylation is dependent on RNF8 and Ubc13 which extend pre-existi

    ATXN3 controls DNA replication and transcription by regulating chromatin structure

    Get PDF
    The deubiquitinating enzyme Ataxin-3 (ATXN3) contains a polyglutamine (PolyQ) region, the expansion of which causes spinocerebellar ataxia type-3 (SCA3). ATXN3 has multiple functions, such as regulating transcription or controlling genomic stability after DNA damage. Here we report the role of ATXN3 in chromatin organization during unperturbed conditions, in a catalytic-independent manner. The lack of ATXN3 leads to abnormalities in nuclear and nucleolar morphology, alters DNA replication timing and increases transcription. Additionally, indicators of more open chromatin, such as increased mobility of histone H1, changes in epigenetic marks and higher sensitivity to micrococcal nuclease digestion were detected in the absence of ATXN3. Interestingly, the effects observed in cells lacking ATXN3 are epistatic to the inhibition or lack of the histone deacetylase 3 (HDAC3), an interaction partner of ATXN3. The absence of ATXN3 decreases the recruitment of endogenous HDAC3 to the chromatin, as well as the HDAC3 nuclear/cytoplasm ratio after HDAC3 overexpression, suggesting that ATXN3 controls the subcellular localization of HDAC3. Importantly, the overexpression of a PolyQ-expanded version of ATXN3 behaves as a null mutant, altering DNA replication parameters, epigenetic marks and the subcellular distribution of HDAC3, giving new insights into the molecular basis of the disease.</p

    ATXN3 controls DNA replication and transcription by regulating chromatin structure

    Get PDF
    The deubiquitinating enzyme Ataxin-3 (ATXN3) contains a polyglutamine (PolyQ) region, the expansion of which causes spinocerebellar ataxia type-3 (SCA3). ATXN3 has multiple functions, such as regulating transcription or controlling genomic stability after DNA damage. Here we report the role of ATXN3 in chromatin organization during unperturbed conditions, in a catalytic-independent manner. The lack of ATXN3 leads to abnormalities in nuclear and nucleolar morphology, alters DNA replication timing and increases transcription. Additionally, indicators of more open chromatin, such as increased mobility of histone H1, changes in epigenetic marks and higher sensitivity to micrococcal nuclease digestion were detected in the absence of ATXN3. Interestingly, the effects observed in cells lacking ATXN3 are epistatic to the inhibition or lack of the histone deacetylase 3 (HDAC3), an interaction partner of ATXN3. The absence of ATXN3 decreases the recruitment of endogenous HDAC3 to the chromatin, as well as the HDAC3 nuclear/cytoplasm ratio after HDAC3 overexpression, suggesting that ATXN3 controls the subcellular localization of HDAC3. Importantly, the overexpression of a PolyQ-expanded version of ATXN3 behaves as a null mutant, altering DNA replication parameters, epigenetic marks and the subcellular distribution of HDAC3, giving new insights into the molecular basis of the disease.Spanish Agencia Estatal de Investigacion´ [PID2019- 109222RB-I00/AEI/10.13039/501100011033]; European Union Regional Funds (FEDER) (to R.F., V.A.J.S.); Agencia Canaria de Investigacion, ´ Innovacion´ y Sociedad de la Informacion´ [ProID2020010109]; FEDER (to R.F.); Agencia Canaria de Investigacion, ´ Innovacion´ y European Social Fund integrated Operational programme of the Canary Islands Sociedad de la Informacion´ de la Consejer´ıa de Econom´ıa, Industria, Comercio y Conocimiento and the 2014–2020, Eje 3 Tema Prioritario 74 (85%) (to E.H.C.); Medical Research Council Programme [MR/X006409/1 to K.R.]; Breast Cancer Now [2019DecPR1406 to K.R.]. Funding for open access charge: Agencia Canaria de Investigacion, ´ Innovacion´ y Sociedad de la Informacion´ [ProID2020010109]; European Union Regional Funds (FEDER)

    Live-cell imaging of endogenous CSB-mScarletI as a sensitive marker for DNA-damage-induced transcription stress

    Get PDF
    Transcription by RNA polymerase II (RNA Pol II) is crucial for cellular function, but DNA damage severely impedes this process. Thus far, transcription-blocking DNA lesions (TBLs) and their repair have been difficult to quantify in living cells. To overcome this, we generated, using CRISPR-Cas9-mediated gene editing, mScarletI-tagged Cockayne syndrome group B protein (CSB) and UV-stimulated scaffold protein A (UVSSA) knockin cells. These cells allowed us to study the binding dynamics of CSB and UVSSA to lesion-stalled RNA Pol II using fluorescence recovery after photobleaching (FRAP). We show that especially CSB mobility is a sensitive transcription stress marker at physiologically relevant DNA damage levels. Transcription-coupled nucleotide excision repair (TC-NER)-mediated repair can be assessed by studying CSB immobilization over time. Additionally, flow cytometry reveals the regulation of CSB protein levels by CRL4CSA-mediated ubiquitylation and deubiquitylation by USP7. This approach allows the sensitive detection of TBLs and their repair and the study of TC-NER complex assembly and stability in living cells.</p

    Forms of the Chemotactic Adenosine 3’,5’-Cyclic Phosphate Receptor in Isolated Dictyostelium discoideum Membranes and Interconversions Induced by Guanine Nucleotides

    No full text
    Aggregating Dictyostelium discoideum cells possess receptors for the chemoattractant cAMP on their cell surface. Membranes enriched in these receptors were isolated. Kinetic studies indicated the same receptor heterogeneity in membranes as found for intact cells. Dissociation kinetics revealed at least three receptor forms: one form, called SS, with k-1 = 0.9 × 10-3 s-1 and KD = 6.5 nM; one form, called S, with k-1 = 1.3 × 10-2 s-1 and KD = ~6 nM; and one or more forms, called F, with k-1 > 0.1 s-1. The contribution of the SS form to the dissociation process was lower in the presence of millimolar concentrations of cAMP compared to dissociation induced by dilution only. Guanosine di- and triphosphates decreased the affinity of membranes for cAMP by increasing the dissociation rate of the cAMP-receptor complex. This was shown to result from a reduction in the number of sites of the slowly dissociating, high-affinity receptor form SS and probably also the high-affinity form S. Because the total number of cAMP binding sites was not changed by guanine nucleotides, it is inferred that the SS and S receptor forms are converted to other more rapidly dissociating receptor forms with lower affinities than SS and S. We propose that cAMP receptors in Dictyostelium membranes interact with G protein which binds guanosine di- and triphosphates. The different complexes between receptor and occupied or unoccupied G protein explain the different receptor forms and their interconversions.

    In vivo quantitative assessment of cell viability of gadolinium or iron-labeled cells using MRI and bioluminescence imaging

    No full text
    In cell therapy, noninvasive monitoring of in vivo cell fate is challenging. In this study we investigated possible differences in R1, R2 or R2* relaxation rate as a measure of overall cell viability for mesenchymal stem cells labeled with Gd-liposomes (Gd-MSCs) or iron oxide nanoparticles (SPIO-MSCs). Cells were also transduced with a luciferase vector, facilitating a correlation between MRI findings and cell viability using bioluminescence imaging (BLI). Viable Gd-MSCs were clearly distinguishable from nonviable Gd-MSCs under both in vitro and in vivo conditions, clearly differing quantitatively (ΔR1 and ΔR2) as well as by visual appearance (hypo- or hyperintense contrast). Immediately post-injection,viable Gd-MSCs caused a substantially larger ΔR2 and lower ΔR1 effect compared with nonviable MSCs. With time, the ΔR1 and ΔR2 relaxation rate showed a good negative correlation with increasing cell number following proliferation. Upon injection, no substantial quantitative or visual differences between viable and nonviable SPIO-MSCs were detected. Moreover, nonviable SPIO-MSCs caused a persisting signal void in vivo, compromising the specificity of this contrast agent. In vivo persistence of SPIO particles was confirmed by histological staining. A large difference was found between SPIO- and Gd-labeled cells in the accuracy of MR relaxometry in assessing the cell viability status. Gd-liposomes provide a more accurate and specific assessment of cell viability than SPIO particles. Viable Gd cells can be differentiated from nonviable Gd cells even by visual interpretation. These findings clearly indicate Gd to be the favourable contrast agent in qualitative and quantitative evaluation of labeled cell fate in future cell therapy experiments

    Studies on the Depth of Crown of Rice, Wheat and Barly Plant 4 : Effects of oxidation reduction potential in soil and soil humidity on the length of subcrown-internode and the depth of crown

    Get PDF
    textabstractXPC recognizes UV-induced DNA lesions and initiates their removal by nucleotide excision repair (NER). Damage recognition in NER is tightly controlled by ubiquitin and SUMO modifications. Recent studies have shown that the SUMO-targeted ubiquitin ligase RNF111 promotes K63-linked ubiquitylation of SUMOylated XPC after DNA damage. However, the exact regulatory function of these modifications in vivo remains elusive. Here we show that RNF111 is required for efficient repair of ultraviolet-induced DNA lesions. RNF111-mediated ubiquitylation promotes the release of XPC from damaged DNA after NER initiation, and is needed for stable incorporation of the NER endonucleases XPG and ERCC1/XPF. Our data suggest that RNF111, together with the CRL4<sup>DDB2</sup> ubiquitin ligase complex, is responsible for sequential XPC ubiquitylation, which regulates the recruitment and release of XPC and is crucial for efficient progression of the NER reaction, thereby providing an extra layer of quality control of NER

    Probe-independent and direct quantification of insulin mRNA and growth hormone mRNA in enriched cell preparations.

    No full text
    Task division in multicellular organisms ensures that differentiated cell types produce cell-specific proteins that fulfill tasks for the whole organism. In some cases, the encoded mRNA species is so abundant that it represents a sizeable fraction of total mRNA in the cell. In this study, we have used a probe- and primer-free technique to quantify such abundant mRNA species in order to assess regulatory effects of in vitro and in vivo conditions. As a first example, we were able to quantify the regulation of proinsulin mRNA abundance in beta-cells by food intake or by the glucose concentration in tissue culture. The second example of application of this technique is the effect of corticosteroids on growth hormone mRNA in enriched somatrotrophs. It is anticipated that other examples exist in which measurement of very abundant mRNAs in dedicated cells will help to understand biological processes, monitor disease states, or assist biotechnological manufacturing procedures
    corecore