1,115 research outputs found

    Carbon and nutrient losses during manure storage under traditional and improved practices in smallholder crop-livestock systems - evidence from Kenya

    Get PDF
    In the absence of mineral fertiliser, animal manure may be the only nutrient resource available to smallholder farmers in Africa, and manure is often the main input of C to the soil when crop residues are removed from the fields. Assessments of C and nutrient balances and cycling within agroecosystems or of greenhouse gas emissions often assume average C and nutrient mass fractions in manure, disregarding the impact that manure storage may have on C and nutrient losses from the system. To quantify such losses, in order to refine our models of C and nutrient cycling in smallholder (crop-livestock) farming systems, an experiment was conducted reproducing farmers’ practices: heaps vs. pits of a mix of cattle manure and maize stover (2:3 v/v) stored in the open air during 6 months. Heaps stored under a simple roof were also evaluated as an affordable improvement of the storage conditions. The results were used to derive empirical models and graphs for the estimation of C and nutrient losses. Heaps and pits were turned every month, weighed, and sampled to determine organic matter, total and mineral N, P and K mass fractions. Soils beneath heaps/pits were sampled to measure mineral N to a depth of 1 m, and leaching tube tests in the laboratory were used to estimate P leaching from manure. After 6 months, ca. 70% remained of the initial dry mass of manure stored in pits, but only half of or less of the manure stored in heaps. The stored manure lost 45% of its C in the open air and 69% under roof. The efficiencies of nutrient retention during storage varied between 24–38% for total N, 34–38% for P and 18–34% for K, with the heaps under a roof having greater efficiencies of retention of N and K. Laboratory tests indicated that up to 25% of the P contained in fresh manure could be lost by leaching. Results suggest that reducing the period of storage by, for example, more frequent application and incorporation of manure into the soil may have a larger impact on retaining C and nutrient within the farm system than improving storage condition

    Supercritical fluid extraction-capillary gas chromatography: on-line coupling with a programmed temperature vaporizer

    Get PDF
    A simple and versatile system is described for the on-line coupling of SFE to capillary GC. The interfacing consists of a programmed temperature vaporizer (PTV) injector. With this injector it is possible to combine solute trapping, elimination of a high flow of extraction fluid, and quantitative transfer of solutes to the seperation column. The problems caused by impurities in the extraction fluid in on-line SFE-GC are discussed. Simple methods are described for the purification of commercially available carbon dioxide. The trapping efficiency of the PTV injector is studied. Applications of the SFE-PTV-GC system are given for the analysis of polymer anti-degradants, polar compounds, and samples with environmental relevance

    High-speed narrow-bore capillary gas chromatography in combination with a fast and double-focusing mass spectrometer

    Get PDF
    In this work the application of high-speed narrow-bore capillary GC in combination with a fast scanning double focusing magnetic sector mass spectrometer is evaluated. Special emphasis is placed upon detection limits and scan speed in the full scan mode and in the selected ion monitoring mode (SIM). In the full scan mode, up to 20 scans per second could be obtained. The detection limits are in the low picogram range in the full scan mode and improve even to 5 to 50 fg in the SIM mode, depending on the sample complexity and mass resolving power. It will be illustrated that by increasing the resolution in the SIM mode, interferences from ions of the same nominal mass-to-charge ratio as the ions of interest are significantly reduced. Chemical background noise can therefore be largely eliminated, thus enhancing the signal-to-noise ratio

    Effect of Coulomb scattering from trapped charges on the mobility in an organic field-effect transistor

    Get PDF
    We investigate the effect of Coulomb scattering from trapped charges on the mobility in the two-dimensional channel of an organic field-effect transistor. The number of trapped charges can be tuned by applying a prolonged gate bias. Surprisingly, after increasing the number of trapped charges to a level where strong Coulomb scattering is expected, the mobility has decreased only slightly. Simulations show that this can be explained by assuming that the trapped charges are located in the gate dielectric at a significant distance from the channel instead of in or very close to the channel. The effect of Coulomb scattering is then strongly reduced
    • …
    corecore