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SUHHARY 

This rapport treats practical aspects of process ident1fication 
w1th PRIMAL; a tool for mathematica! model lm1lding. 

Process ident1ficat1on is an iterat1ve procedure in which k.now­
ledge about the dynamic behaviour of the process is gathered 
by means of experiments, signa! analysis, est1mat1on and 
val1da tion. 

In an identification project the prepatory pre-analysis 
phase plays a very important role. Different aspects of the 
analysis and especially the conditioning of raw measured process 
data have been given attention in this worl<.. 
As a 'partial' result a general signal conditioning appl1cat1on, 
named FILTER, is added to the PRIMAL package. A protocol has been 
wr1tten to solve some of the questions occurring in the pre­
analysis of a practical process wi th PRIMAL. 

It is concluded that proper conditioning of 'raw' process data 
is one of the most important steps in process ident1ficat1on. If 
this step is not performed properly, no matter sophisticated the 
parameter est1mat1on method used might be, an identification 
method will generally not funct1on adequatly. 

lf PRIMAL; Pacl<.age for Real-Time Interactive Modelling, 
Analyses and Learning. 
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Chapter 1 . INTRODUCTION 

§ 1 . 1 Preliminaries 

This report is the result of my wor:K at the System & Control 
group of the Physics Department at the University of Technology 
in Eindhoven. This wor:K has been performed to obtain a Master of 
Science degree in Physical Engineering. 

One of the main research items in the group is the Methodology 
of Experimental Modelling. My wor:K is carried out within this 
context. 
For automatic aquisation and analysis of experimental data a tool 
is needed Which supports actlvities in this field. The centre of 
attention therefore lies in the development and application of 
the PRIMAL pac:Kage (Pac:Kage for Real-t1me Interact1ve Modelling, 
Analyses and Learn1ng). PRIMAL supports experimentating, data 
aquis1 ti on, signal processing, signal analysis, system identifi­
cation, modeHing and controller design. A more detailed descrip­
tion of the special features of PRIMAL is given in chapter 1.3. 
Two major aspects in process identif1cat1on, experiment design 
(chapter 4) and data conditioning (chapter 5) have been studied. 
The conditioning of process data has been given most attention. 
With respect to the design of experiments for i<1ent1f1cation only 
a first stud.y has been performed. 

In this report I have tried to describe my experiences in the 
analysis of (measured) process data and model building in 
the identification of several practical processes. 
Throughout this report these experiences are formulated in a 
'rule of th u mb' manner or by means of a protocol. The reader 
should be aware that -strictlY spea:King- these rules are only 
va lid for the studled data sequences. Nevertheless I hope tha t 
these experiences may be of use for future identif1cation pro­
jects. 

§ 1 . 2 Process Diagnostics ; 
t,b& Purpose 2:f Mathematica! Model Bu1ld1nl 

The problems occurr1ng in system & Control Engineering may be 
divided into 4 main categories: 

-1 Diagnostics & :estimation of one or more specHic process 
Monitoring coefficients which can not be measured di­

rectlY. 

- 2 Pred.ietion : pred.ietion of a process output signal based 
on past output and past an<1 present input 
signals. 

y(t+1;e) = Mp<ut,yt;e) 
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modeHing of the dynamic behaviour of a pro­
cess to explain the output of the process 
based on the past and present input sig­
nals. 

y < t+ 1;e > = Hs <ut , tt;e > 

= Hs (ut;e•) 

control system design to achieve better 
dynamica! behaviour, e.g. m1nimizat1on of 
the 1nfluence of disturbances in process 
variables and changes in process dynamics. 

For all these problem areas a model of the dynamica! beha v1our of 
the process under study is necessary. 

The model is an abstract representation of a part, or certain 
aspects of interest, of a complex real-world process. Such a 
system can be though t of as being composed of an observable and 
unobservable part and a controllable and uncontrollable part. 
Wi th a model a better understanding of the process can be ob­
tained. Also a model permits us to manipulate the real process 
for reaching certain goals. It is clear that an important aspect 
of modelling is i ts intended use. The construction , the form and 
the complex! ty of a model should mainly be determined by those 
aspects of the "realitY" or the stu<Hed object which are believed 
relevant for the intended use of the model. This implies of 
course tha t the validi ty and usefulness of a model is restricted. 
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§ 1 . 3 ~ PRIHAL Pro lect 

In literature much attention is paid to the theoretica! aspects 
of identification methods of multivariable processes and design 
of (adaptive) controllers. In practice however these methods are 
rarely used. Reliabili ty, robustness and usefulness of the 
results of these methods have had too little attention in theory. 

In practice the pa th to re sul ts is seldomly straight. It is a 
matter of trial, learning and re-trial. This interactive learning 
process has been put central in the design of the package 
PRIHAL, which implies an interact i ve structure in which the 
experimenter has a free choice on any moment between all the 
facilities of the package {see Renes /22/,/26/). 
PRIHAL is a tool for mathematica! model building meant to close 
the gap between theory and practice in the field of model buil­
ding and process identification. 

PRIHAL ~ ~ following interesting features ; 

- an interactive structure. The train of thought of the 
rimenter determines the path followed in ident1fication. 

- PRIHAL 
all the 
ding. 

con tains a n umber of so -called applica ti on mud ules 
different stages in experimentation and model 

expe-

for 
buil-

Applications are available tor experimentation, real-time ob-
servation of the 'raw• measured process data, correlation and 
frequency analysis, data conditioning, parameter estimauon for 
parametrie and non-parametrie models, model validation and 
model simulation. Also Kalman filtering, extended kalman fil-
tering and controller design will be available in near future. 

- Hew applications can be ad.d.ed. easily to the package. 

- Applications operate in parallel and independent from one ano-
ther. Intermedia te -temporarily- results of an application 
are a vailable tor other applica tions and inspeetion by the 
experimenter, see figure 1.1. 

- A comfortable powertul graphical application is available tor 
visual monitoring of high quantities of data and. application 
results. 

- With PRIHAL all kinds of testsignals can be generated. for 
superposi ti on on process inputs to enhance the in forma u on in a 
requested frequency range . Wi th this intera ct! ve experimenta-
t1on can be performed easily . 
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Experimentation and processing of the, sofar, gathered data can 
be performed simultaneously. 

- A 1ogbook is being 
the experimenter 
1ogbook all actions 
ter are tractable . 

kept of experiment conditions, actlvities of 
and messages from the package. With this 

that have been undertaken by the experimen-

- PRIMAL has been written in a proper standardized programming 
language (FORTRAH77) . Together with a special software 
structure and the usage of a number of special written 11bra-
ries implementation of PRIMAL on different hardware structures 
in different industrial surroundings is rather easy. 
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Figure .LJ Structure of the PRIMAL package 

Before commercial industrial application of PRIMAL, the package 
has to be tested and evaluated in a number of identification 
applications to real processes under industrial circumstances. In 
this work PRIMAL has been used as a tool for identification of a 
laboratory process and an industrial p1lot process (see chapter 
3). Especially the practical aspects of process identification 
and the usage of PRIMAL in this have been given attention. 
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Chapter 2. PRACTICAL ASPECTS QF PROCESS IDEHTIFICATION 

§ 2 . 1 Introduetion 

Mathematica! models of the dynamic behaviour of a process can 
be derived in two ways: 

-1. One possibility is to derive a theoretica! model from basic 
physical laws and construction data. This analytica! model-
Hng I of a complex real-world process I is often very dif-
ficult. Important process coefficients 1 often varying with 
time and place I are very hard to determine . 

-2. With experimental analysis -identification- the (noisy) 
signals (=time sequences) of interest of an existing pro-
cess are measured. Using an estimation procedure a model 
may be obtained describing the input-output behaviour of 
the process. The driving input signals can be artificial -
specially designed- test signals . 

§ 2 . 2 IJ. Hethodology 1D Process I<1ent1f1cation 

Information sourees f2r lll§ mathematica! mo<1ell1ng process 

Hodelling is an ongoing sequence of acu vitles only Hmi te<1 by 
practical constraints like cost and time. To achleve a 
satisfactory a-posteriori resu1t1 information is 'tapped' from 
the process under study from different sources. Three major 
sourees of information feeding the model building process can be 
distinguishedl see figure 2.1. 

EXPERIMENT AL 
DATA 

J 
A PRIORI I MATHEMATICAL 
DOWLEDGE l MODELLING • 

GOALS 

E1~u~~ a~! Information sourees for mathematica! modelling 
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-1. ~ 
The modeHing 1s guided by the goals and. purposes of the 
id.entification project. 

-2 . IJ. priori process Knowledge 
Knowledge a vailable abou t the dynamic properties of the 
process are used in further steps lik.e the design of 
experiments and. the analysis of the process . 

-3. Experimental ~ 
Information about the process may be gathered throu~h measu­
remen ts of the process signals . 

In id.ent1ficat1on projects a-priori Knowled.ge is important, but 
the ma1n informauon souree is data obtained from experiments on 
the process. Advanced. techniques are necessary to d.efine experi­
ments and to gather and analyse the data because of the sensivity 
of the result of the analysis with respect to the information 
content of the measurement data. The goal of the modeHing plays 
an important role during each stage. At any quesuon to be ans-
wered d.uring an ident1ficat1on project the intend.ed. use of the a­
posteriori model has to be Kept in mind. 

Characterization 2.f lll.e ident1f1cation problem 

An useful characterization of the 1dent1ficat1on problem has 
been gi ven bY Söderström /15/. The following four nouons charac­
terize the ident1ficat1on problem. 

-1 . lll.e experimental cond,ition X referring to the manner in which 
the signals are determined. It describes how the identifica­
tion experiment is carried out. 

-2. lll.e mod,el structure 8 referring to the mathematica! 
representation of a process. A restricted modelset of cand.i­
date mod.els is selected. In this stage a substant1al amount 
of a-priori Knowledge or a-priori guesses with respect to the 
process is introduced.. The set of mathematica! models used. 
for id.entification within PRIMAL can be described with the 
following list of ad.ject1 ves : 

- dynamic 
- causal 
- time-invariant 
- discrete -time 
- linear dynamics 
- fini te order 
- stochastic 
- lumped parameters 
- SISO (single input single output) or 

MIMO (multiple input multiple output) 
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The model set is chosen by selection of a representation form 
together with a set of parameter vectors. A model structure then 
is a set of models (or in an isomorphic way) a set of parameter 
veetors (9}. Together wi th the concept of generalized models, 
Eyk.hoff /13/, a model error form can be chosen for each represen­
ta ti on, tha t is linear in the parameters. 
Hot only the re lation between the dependent (output) and indepen­
dent (input) variables is linear but also the relation between 
the dependent variables and the parameters in the parametrization 
of the chosen model set. Evaluation of a performance criterion -
based on such a definition of model error- with respect to the 
parameters is simple. 

-3. ~ process refers to a mathematica! description of the 
process to be identified. Such a description is an 
idealiza tion. It describes the mechanism of the process 
that generates the data. To define and apply identification 
methods there is no need to assume a certain system descrip-
tion. It is, however, useful for analysis of the results. 

We assume, see Söderström /15/, that the system s that gene­
rates the data can be described by a determinist1c transfer 
function and an output disturbance signal. The disturbances are 
described by means of an additive output noise (superposition 
principle for linear systems). 

The system S is linear, fini te order, asymptotically stabie and 
stochastic. The output can be written as: 

S: Y(t) : X(t) + W(t) 
X(t) : G(q-1)u(t) with 

y (t) measured outputs at time instant "t", 
x(t) undisturbed outputs, 
w(t) output disturbances, 
u ( t ) : inputs , 
q-1 : the back.ward shift operator 

q-1u(t) = u(t-1), 
G (q-1) : the transfer function matrix. 

In pracuce not only stationary stochastic noise with zero mean 
enters the system but also disturbances like: 

- outliers 
- slow "drifts" (trends) 
- non-additive noise components like quantisation noise 
- static and dynamic non-linearitles 
- other measurement errors 

These disturbances have a large influence on the performance of 
the identification methods. They have to be taken care of before 
application of identification methods to the measured process 
data. 
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-4. lhe criterion J referring to the estimation method used to 
select in the predefined modelset the element that fits best 
the a vailable data . 
The parameter estimates at time instant N for given x ,H ,s ,J 
are denoted by ê (N;X ,M ,s ,J). 

A global description of the model structure, estimation method 
and criterion of the parameter estimation applications in PRIHAL 
is gi ven in paragraph 2.3. 

IJ. global scheme 1D identification 

The construction 
learning process. 
used to adapt one 
tion scheme. 

of a model in identification is an 1terative 
Gained k.nowledge of the process dynamics is 
or more intermediate steps in the identifica-

Generally 3 main phases can be distinguished in the 1dentif1ca­
t1on procedure: 

-1. preparation 1 pre-analysis, 
-2. estimation, 
- 3 . valida tion . 

In the pre-analysis phase the pre-requ1s1 tes for the estima ti on 
phase are organized. 
In the estirnation phase a modelset and a suitable parametrization 
have to be chosen. Then, if a parametrie model structure is 
selected, the structural parameters lik.e model order, or structural 
invariants, and a possible time delay of the model have to be 
determined. An estima ti on metbod and a cri terion have to be 
selected and finally the parameters are estimated. 
In the model valida ti on phase 1 t has to be determined whether an 
estimated model should be accepted or not. 

A scheme of the identificat1on procedure with the mentioned 
phases in mutual relation is g1ven in figure 2.2. 
It is my experience is tha t 4 ma in loops exist. 
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The worK has focussed on the pre-analysis phase. This phase taKes 
generally a large amoun t of time in the tot al project. Some 
'tools' to answer the questions occurring in this phase might 
therefore :be very useful. Host of the questions however can only 
:be answered in an 'ad hoc' manner. I have tried to formulate some 
'rules of thum:b' and a protocol to solve some of these questions. 
The reader should remem:ber that the rules presente<1 throughout 
this report are :based on my experiences on the studied processes. 
Rules formulated :by ethers, Isermann /1/ an<1 EyKhoff /13/, are 
a lso men tione<1. 

The elements of the scheme presente<1 will :be discusse<1 detaile<1 
now. It is partly :based on my experiences in i<1entification of a 
la:boratory process an<1 part1cipation of the System & Control 
Group with PRIHAL in an i<1entification project concernins a 
glass-fee<1er (see chapter 3). Although the various su:b-pro:blems 
are discussed seperately many interrelations exist. 

- 1 . Pro:blem <1efinit1on 

The project starts wi th a <1etaile<1 <1escript1on of the 
m smSl. purposes of the project : 

- Intended use of the model to :build 
- lim1te<1 use, e ,g. dynamical :behaviour aroun<1 an pre-

<1escri:be<1 eperating point or a more generally applica:ble 
model. (These aspects determine the need for information 
in the measured data and the required accuracy of the 
mo<1el to :be <1eveloped ) . 

- Investigate possi:ble pro:blems and :bottlenecKs 

-2 . Preliminary process inyestigauon 

At the beginning of the project a vaila:ble exist1ng Knowledge 
of the process has to :be ga there<1 . 

rnvestigate teehoical properties <1ynamics non-
linearitles ) an<1 possi:ble constraints of the actuators 
and the sensors 

- Select the process inputs and outputs of interest. The 
inputs chosen must :be a:ble to vary the outputs over the 
range of interest. 

- Determine possi:ble dynamic ranges an<1 accuracy <1emands for 
the signals to measure . 

In pract1ce it is advisa:ble to measure as much variables as 
possi:ble . This ena:bles facili ta tes tracKing <1own the 
possi:ble reasens for signal <1istur:bances an<1 enlarges the 
availa:ble amount of information on the process and its 
environment. 



PRACTICAL ASPECTS OF PROCESS IDENTIFICATION Page 2o7 

- Normal operating points and operating cond1t1ons have to 
be k.nown o 

the already mea-- gather (1f possible) some information on 
sured ( logged ) signals of the process I 

tural signal variances and bandwidths 
the process signals are of in terest 0 

aspects lik.e na-
of the spectra of 

Characteristics of the disturbances that enter the process 
S/N ratio of the the process signals 0 

- Investigate the stability of the process 0 

- The existence of operative control loops has to be k.nown. 

- 3 o Configuration i Ins tallation Equipment 

In this step the necessary hardware and software has to be 
installed: 

- Additional sensors I transformers and actuators 
mounted on the process (if admitted) and gauged 0 

- Investigate instrument linearity o 

must be 

- Equipmen t for signal genera ti on I data storage 
analog signal con di Honing 1 for instanee 

on-line 
sealing and 

anti-aliasing filters, have to be placed. 
- The software for measurement and excitation of the process 

inputs has to be contigured. 

-4 o Detailed 1nyest1gat1on Q.f elementary process dynamics 

In this step in forma ti on on the dynamica! beha viour of the 
process must be ga thered o 

To design appropriate experiments 1 for process identifi­
cation I information is needed on the following process fea-
tures: 

causal relations between the measured process signals 0 

Sensivities (steady state gains K for each interesting 
input-output relation in combination with 
A range of allowed variations for the input test 
signals in the experiments o 
An estimation of the S/N ratio for the various process 
signals measured in the experimentso 
The S/N ratio's are very important with respect to the 
performance of the different parameter estimators o In 
practice this ratio is often determined by low fre-
quency noise ("trends" ) ( see chapter 5 0 3 ) 0 

1: Application of test signalsl to enhance the informatlon 
content of the input and output signalsl is not always allowed at 
industrial processes. The experimenter is restricted to the 
natura! si~mals in normal steady state operatlng conditions. 
Often these signals do not contain sufficient 1nformat1on for 
determination of an appropriate model of the dynamica! behaviour 
of the process. In the next steps we assume tha t applica ti on of 
test signals on the process inputs is allo wed. 
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- Elementary dynamical process properties of each input­
output relation of interest, like: 

- dominant time constants T of the first order 
process approxima ti ons , 

- possible time delays Td, 
- sta tic and dynamic lineari ty 1 non -lineari ty 

of process and instrumen ta ti on , for instanee 
dependency of K (or other process properties) on 
the amplitude A of a test signal superimposed on 
a process input: K = f (A) = constant ? or 
the occurrence of hysteresis in one or more 
process signals or 
possible sa tura tion of the measured process sig-
nals. 

- Time-invariant/variant process behaviour like 
aging, for instanee pollution or drift1ng of the 
process. 

- An estima te of the order of the d.ifferen t (sub- ) 
processes. 

If not enough informat1on on the elementary process dynamics 
is available, some premeasurements must be performed. 
A description of the 'tools' used for determination of some 
properties of the elemen tary dynamics of the studled processes is 
gi ven in chapter 4. Th is phase is in practice also very useful 
for testing the equipment, especially in an -often rather hos­
tile- industrial surrounding. 

- 5 . Experiment design . J2äa coneetion 

Besides the already mentioned premeasurements phase 
riments have to be performed for process 1dentificat1on 
validation of the estimated. mod.els. It is possible to 
crease the information content in the measured. process 
nals with specially constructed. input signals. 
Information is needed on the following experiment 
meters: 

- The frequency band of the test signal . 
- The sampling ra te T o. 
- Length (duration) N of the experiment. 
- Type of the test signal . 

expe­
and. 

in­
sig-

para-

- Amplitude A of the test signal, such that the information 
content of the input and output signals is as great as 
possible . The design of an opt1mal1 experiment however 
is only possible 1f the process and its disturbances are 
:Known a priori. 
In practical 'explorative' identification projects this is 
hardly the case . 

A minimum requirement for the input test signal is that the 
dynamics of the identifiable part of the process have to be 
"persistently ecxited" during the measurement pertod long 
enough to permit the parameter estimation algorithm to con­
verge. 
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A further. description of the practical aspects of exper1ment 
design for process identification is given in chapter 4. 

- 6 . Inspeetion Qi measured process data . signal analysis 

- In this step the measured ra w process data 
inspected carefully for disturbances in the 
other possible measurement errors. 

has to 
signals 

be 
and 

- With speetral analysis a first investigation of the 
mical behaviour of the process is possible. It may 
used to see if excitation of the process has been 
cient. 

dyna­
also be 

suffi-

- To study the various causal relations and to investigate 
the possible occurence of time delays in the different 
dynamica! re la tions correla tion analsis may be applied to 
the process data . 

If the excitation of the process has not been suff1c1ent and 
thus if the process data is not rich enough in information a 
re-design of the experiment is necessary. 

-7 . J2ä1a conditioning 

Before application of system iàentification methods the 
process data has to be corrected for the discovered signal 
disturbances. 
Data from practical processes is generally heavily contami­
nated with all kinds of disturbances lik.e outliers I slow 
signal drifts "trends" and measurement noiSe. 

They have large 
identification. A 
data conditioning 
chapter 5. 

influence 
description 
in process 

- 8 . .Process Identification 

on the re sul ts of process 
of the different aspects of 
identification is given in 

The modeHing procedure itself is quite complex. 
- Select a certain set of candida te models . 
- A criterion for estimation must be determined. 
- Estima te the parameters I to determine the 'best' parame-

ters of the model . 
These choises must be controlled by the intended use of the 
model. Also aspects lik.e recursive or iterative I on-line 
or off-line application must be considered. 

1 In terms of 
respect to noisel 
measurement time. 

minimization 
input and 

of certain model errors wi th 
output signal constraints and 
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By selecting one of parameter estima ti on applica ti ons in 
PRIMAL all aspects named are chosen . The only choise left 
concerns with the structural invariants ( order; time delay) 
of the model . 
Each es ti ma tor has i ts own special properties concerning 
With 

- ( asymptotical ) { un ) biasedness , 
- convergence and, 
- efficiency , 1 . e . the varianee of the re sult compared 

with other methods and CPU time used by a method. 
Especially the latter is important in interacti ve use 
of a method by the experimenter. 

In selection of the listed aspects in identification I have 
followed a certain path. A description of this path toeether 
with some interesting aspects is given now. 

-1 . Impulse response estima ti on { HARKOV ) of the process . 
Although this estimation generally taKes a large amount of 
time and sometimes numerical problems 1 occur 1n the 
parameter estima tes , the estima te is rather robust for 
the other important aspects in the procedure liKe experiment 
design ( see chapter 4) . 
Due to the large model set much freedom exists in fitting 
the process in the set model set . 
The result1ng model is easy to understand. Special 
process properties liKe a time delay or an inverse response 
are easily determ1ned from the re sul ting impulse responses . 
The model however is generally of unnecessarily high order . 

-2. Structural test. With the information from a structural test 
C ORDERTES ) a sensible choice of the structural parameters 
in a lower order model . 

-3. A more compact model might be constructed in two 
ways: 

different 

1) one way to construct a model with a small number of para-
meters is to apply a realiza tion method C HAHKEL ) to the 
estima ted impulse responses . 

2) Another way is successive application of the estimators 
GUIDORZI or IVH . GUIDORZI ho wever is found to be sens! ti ve 
to outHers in the process data. The algorithm may not 
converge within the length of the available dataset. The 
estimated model is biased 1f the process output signals are 
corrupted with 'coloured' no1se. 
Therefore IVM has been used which offers more facili ties to 
handle additive output noise. 

1 sometimes a complex pole, wi th the nyquist frequency 
C= fs/2 wi th fs the sampling frequency) as eigen 
frequency, is estimated. This results in an oscillation on the 
parameter estima tes (some examples of this effect can be found in 
chapter 4 and 5). 
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Generally a number of parametrie estimates have to be 
performed wi th varying structural parameters for the system 
or noise model to be estimated before an appropriate 1 
resul t is obtained . 

Which way to follow depends on the intended use of the 
model. If the purpose is simulation the impulse response 
method HARKOV I using an output error criterion in 
estima ti on I should be chosen . If one step ahead predietien 
is performed GUIDORZI or IVH-LS could be chosen. The latter 
uses an equa tion error cri terion in the parameter estima-
tion. For the other estimators available in the application 
IVH I due to the different criteria available for selection 
of the .. best• model in the various steps, this choice is 
much more complicated. See Berben 112/. 

- 9 . Model yerification 

In this step the model obtained sofar is confronted with 
the real process behaviour, taken into account the intended 
use of the model . 
The a priori assumptions used in the identification as weu 
as the input-output behaviour of the model compared with the 
real process are checke d, preferablY on a different set of 
data (so-called cross-validatien) . 
As with process identification, validatien is not a 
straight-forward procedure. 

PRIHAL offers several facilities for verification of 
an estimated model. Aspects of interest are : 

-1 . ~ ~ model estima ti on unbiased? 
In case of an estimator with an equation error criterion: is 
the equa ti on noise a .. whi te• noise s1gnal 

-2. H2.w ~ 
behaviour? 

<P < ·o vv = o for 1 't 1 f. o. 

~ model behaye compared !U..1b ~ process 

By compar1ng the measured output y (t) and the estimated 
(predicted or simulated) output y (t) the output residuals 
w (t) = y (t) - y (t) can be studled. 
The application MODELTST in PRIHAL reviews a model by 
lookins at the simulation behaviour of the model. The 
criterion used is a simulation error output i (i= 1 ... q) : 

n2 
E (Wi(t)-Wi)2 

t =n 1 

n2 
E (Yi(t)-Yi)2 

t=n 1 
with [n 1;n2] an interval in the data sequence. 

1 this will be determined by the validatien principle used 
controlled by the intended use of the model. 
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The simulation performance of different models may be 
compared. 
In practice this appears to be a rather fast and powerful 
way to study the differences between the estimated models. 

-3 . ~ ~ process ill 1.D :the chosen ru Qf 
models? 
Are the output residuals w (t) uncorrelated 
input signals u ( t ) 

,. 
'P (1: >uw = o for all 1:? 

-4. ~ :tng premises valid? 

candidate 

with the 

Is the equation error uncorrelated with the input signal (s) 
u (t) : 

îP (1: >uv = o for all 1:? 

And finally for some modeHing purposes the accuracy of the 
est1ma ted parameters is of importance . 

- 1 o . Model :u...e....a consistency checK . 

The final , most important , vallda ti on step concerns the 
use of the derived model. Also the conslstency of the model 
has to be verified by comparing the estimated model 
with a model estimated on another data set and compar!ng the 
model with models estimated with other methods. 

If the goals of intended use are not satisfled the identifi­
cation procedure from experiment design up to valldation 
may be repeated using the Knowledge obtained sofar. 

As will be clear from the protoco:i presented I 1dent1f~cation of 
real processes recquires an extensi ve pre -analysis phase . 
Although this phase taKes substantial amount of time of the total 
project 1 little literature is available treating aspects 11Ke 
experiment design in the pre-measurement phase and data conditio­
ning for 1dentificat1on. 



PRACTICAL ASPECTS OF PROCESS IDEHTIFICATIOH Page 2. 13 

§ 2 . 3 Parameter Es ti ma tlon 1D PRIHAL 

In PRIHAL several different estima tion methods are a vailable. 
The number of model parameters needed may be determined by per­
forming an order- or structure test first". 

An overview of the available identification methods in PRIHAL is 
gi ven in table 2.1. 

Application Model structure1 Description 

EHH ARHAX, SISO Extended Matrix Hethod 
RPE ARHAX, SISO Recursive Pred.ietion Error 

Hethod 
ORDERTEST HIHO Pred.ietion Error Ordertest 
GUIDORZI State Space, HIHO Hethod of Guidorzi 
IVH HFD, HIHO (Approximately) Optimal 

Instrumental Variable 
Hethod 

TRANSFER Transfer Function, Direct Estimation of the 
HIH02 Transfer function 

HARKOV Impulse Response, Estimation of Harkov 
HIHO parameters 

HAHKEL State Space, HIHO Hankel Realization method 

Table ~ Process identification methods in PRIHAL 

1 ARHAX Auto Regressive Hoving Average, with exogeneous 
input 

HFD Matrix Fraction Description 
2 Hot truly a HIHO estimation method. All the SISO 

sub-transfer functions are estimated independently from 
one another. 

Hot all the identification methods available in PRIHAL have 
been intensi vely used by me. The processes studied. where both 
multivariable in input and output. So the SISO methods have 
hard.ly been used. The HIHO method. TRANSFER has not been used. 
because of its sensitivity to the choice of the parameters con­
cerning wi th the specification of the "frames" to be used. A 
frame is a part of the time sequence of input and. output samples 
measured (see van Dijk /21/). 

A characterisation of the methods used will follow now. Only some 
interesting features are 11sted. 
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ORDERTEST 

GUIDORZI 

HARKOV 

Range order test of Guidorzi. 
The one step ahead prediction error of a 
HIHO model as a function of i ts structural 
riants is estimated. 

m2~~1 x ( t+ 1 ) = Ax (t) + Bu (t) 
y (t) : Cx(t) + Du (t) With 

u (t) input vector at time t ( elimension 
y (t) output vector at time t ( elimension 
X(t) sta te vector at time t ( elimension 

A system matrix ( elimension 
B input matrix ( elimension 
c output ma tri x ( elimension 
D input-output matrix ( elimension 

linear 
in va-

p) 
q) 
n) 
n x n) 
n x p) 
q x n) 
q x p) 

methQd The model is transformeel to an observable 
canonical form in which the system matrix has a 
special bloei<. structure determined completely by 
the structural 1nvar1ants. 
The application estimates <11rectly from the input 
output data the one step ahead prediction error of 
a model as a function of lts structural 1nva-
r1ants. 

HIHO state Space Model Est1mat1on 

mQdel : State Space model (A ,B ,c ,D) in output 
companion form with given structural invariants. 

methQd : Uses a recursive least squares (equation 
error criterion) estimator to estimate the parame-
ters of an input output model equivalent to the 
state space model (see Renes /22/) . 

Direct Impulse Response Est! ma ti on for HIHO 
systems. A matrix results containing a HA model of 
the process . 

mQdel : y(t) : H(O)u(t)+H(l)u(t-1)+ . +H(n)u(t-n) 

with 

H Harl<.ov parameters 
B a matrix polynomial in the bacl<.ward shift 

operator of degree nb. 

methQd : mimimiza ti on of the one step ahead pre­
diction error € = y ( t ) - y ( t ) wi th a recursi ve 
least squares method . 
y(t) is the predieteel output at time instant 
"t" using the estima ted B ( q- 1 ) and input 
signals u(t) ,u(t-1),. (Qutput errQr criterion). 
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IVM 

HAHKEL 

Instrumental Variable Method for estimation of 
parameters of a linear MIMO system . 
{See Berben /12/.) 

model: A(q-1)y{t) = B{q-1)u(t) + v{t) 

V { t ) : {D ( q -1 ) -1 /C ( -1 )Je { t ) . 
With 
V {t) 
e {t) 

equa ti on noise 
vector with estimation residuals, it will 
be approximately a white noise signal. 

A ,B ,C ,D are polynomials in the backward shift 
operator q-1. 

method The MultiStep-algorithm of Söderström 
& Stoica: 

Step 1 : A Least Squares Method minimises a least-
squares error criterion on the equation 
error v (t) (LS-IVM) followed by a 
BootStrap Instrumental variabie Method 
(IVM-BT). An iterative IVM that gives 
unbiased re sul ts . This method does not 
involve noise model estimation. 

Step 2 : Pseudo Linear Regression ( PLR ) Method for 
the noise model . 

Step 3: OPTimal Instrumental Variable Method 
{OPT-IVM). An iterative IVM that gives 
unbiased results with an optimal accuracy. 
This method requires data filtering with 
the inverse noise mod.el. (Step 2). 

Step 4 : Ex ecu te steps 2 and. 3 repea ted.ly . 

Hankel Real1zat1on method, d.erives a low dimen-
sional sta te space model from the estima ted im-
pulse response - markov parameters ( Mk) 
of a process . (A measured 1mpulse response migh t 
also be used . ) 

model : State Space model (A ,B ,c ,D). 

method: F1rst a Hankel matrix is composed of the 
estimated markov parameters. Then a singular value 
decomposit1on of the Hankel matrix is computed. 
For a k d1mensional real1za t1on the approx1ma te 
Hankel matrix Hk is determined by the k-d.1men-
sional least squares approximat1on of the Hankel 
matrix. 
several different realization methods are suppor­
ted. by the appl1ca ti on . 
The state space matrices A ,B ,c an<1 D can be com-
putect d.irectly from this approximate Hankel 
matrix. 
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§ 2.5 Remarks 

For succesful appllcation of system identification to practical 
industrial processes much attention has to be given to the pre­
analysis phase in an identification procedure. 
Especially the design of experiments ,in the premeasurement 
phase, and the conditioning of data before application of process 
identification methods are of importance. The influence of 
disturbances in data of practical processes on the performance 
and behaviour of the different system identification methods is 
found to be large. Proper data conditioning therefore is absolu­
tely necessary (see chapter 5). 

The developrnent of an appllcation for PRIHAL for conditioning of 
raw rneasured process signals however has been given most atten­
tion. Also some research has been done on the proper choices to 
be made for the different opera ti ons in data conditioning and the 
effects of data conditioning on the behaviour and performance of 
a nurnber of systern identification methods. 

Some research has been done in this work on the different aspects 
of experiment design for process identification. The behaviour 
and performance of a number of system identification methods has 
been studied wi th respect to one of the parameters in the design 
of experirnents: the frequency range to enhance by an input test 
signal. Th is parameter determines, together wi th the other para­
meters in experiment design, the information content of the 
rneasured process signals. 
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Chapter 3. îHE PROCESSES 

§ 3. 1 Introduetion 

During my work at the System & Control Group I have studied two 
practical processes. 

I started with a thermal-hydraulic laboratory process to study 
the different aspects in process identification including confi­
guration and instanation of equipment, gauging of the instru­
ments, pre-analysis, estimation and validation. The study inclu­
ded the evaluation of PRIMAL as a tool for identification of a 
practical process. 
This process had been used to study dynamic modeHing and 
controller design in the past years. 
It is build using standard industrial equipment to imitate prac­
tical condi tions as much as possible. Ho special measures have 
been taken to cope with aspects like process non-linearities, 
na tural disturbances and interaction between variables. 
The process is multivariable and the various sub-processes have 
different (dominant) time constants. 
Experiments have been performed to study the effect of several 
aspects of experiment design -for system identification- on the 
performance and behaviour of a number of identification methods 
a vailable in PRIMAL. 

In may 1987 I participated in the study of an industrial pilot 
process, concerning a glass-feeder, wi th the PI COS group at 
PHILIPS in Eindhoven wi th PRIHAL as a tool for on-line 
experimenting and process identification. Instanation and confi­
guration of equipment has been done by PICOS. 
Theoretica! modeHing of the feeder is difficult due to the com­
plicated nature of the process. Several partial differential 
equa ti ons in time and place are necessary to describe the pro­
cess. The results of the modeHing are not reliable and certain­
ly not useful for sim u la ti on purposes. 
The purpose of this project therefore is to develop an empirical 
model of the dynamic behaviour of the glass feeder around a 
certain operating point. The main goal of modeHing the dynamic 
process beha viour is the design of a control system. 

A description of 
together with the 
below. 

the in teresting aspects of both 
equipment used for identification 

processes 
is given 
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§ 3 . 2 IJ. Thermal-Hydraulic Process 

Process Description 

The process may be divided in a hydraulica! part, with water as 
running medium, and a thermal part. A cold water flow is first 
heated in a counter current heat exchanger made. The heated water 
flows through a rubber tube (with a variabie length up to 60 m) 
into a vessel. From this vessel the water flows freely into a 
second -wen mixed- buffer vessel where a valve controls the 
water flow leaving the system. It shall be clear that an inter­
action exist between the hydraulica! and thermal part of the 
process. The input variables of the process are the cold water 
flow entering the system and the warm water flow running through 
the heat exchanger hea ting the cold water. The water levels in 
the vessels and various water temperatures in the process are the 
output variables. 
A nearly identical secundary circuit composed of a heat exchanger 
and a transport tube is used to generate 'coloured' noise on the 
various output variables. The water flow from this circuit enters 
the primairy circuit in the first vessel. 
Special precautions are taken to stabilize normal process opera­
ting condi tions. 
The cold water used as input for the system is normally tap-water 
stabilized in pre ss ure (abou t 2 bar) by a special vessel. The 
pressure wi thin this vessel is held constant. 
The cold water temperature remained nearly constant at about 13 
°C d uring experimenta tion. 

The warm water feeding the heat exchangers runs through a closed 
warm water circuit (stabilized at 90 "C). In this circuit the 
water pressure is stabilized. 

A number of dynamic elements may be distinguished in the pro­
cess: 

- 1 . the heat exchanger , 
-2. the transport tube (not isolated for energy losses), 
-3. a first vessel where both heated water flows debounces 

in and 
-4-. a second vessel (wen mixed) beneath the first vessel. 

A schema tic view of the process together wi th the process 
variables of interest is gi ven in figure 3.1. 
A list of the variables together with their approximate values in 
the operating point is given in table 3.1. 
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transport 
tube 

heat exchanger 

Figure 1......1 Schematic view of the process. 

Name 
Process 
Variable 

Input 
Q 

Gs 
Gw 
Gws 

variables 

De scription 

cold water flow primary circuit 
cold water flow secundary circuit 
warm water flow primary circuit 
warm water flow secundary circuit 

Output variables 
To 
T1 
T2 
T2s 
H3 
T3 

and 
Tw 

Tair 

cold water inlet tempera ture 
water temp. after heat exchanger 
water temp. after transport tube 
as T 2 secundary circuit 
water level first vessel 
water temp. at the bottorn of the 
first vessel 
water level second vessel 
water temp. at the bottorn of the 
second vessel 

warm water circuit temp. after the 
heat exchanger 
free air temperature 

Table ll Variables in the process 

Page 3. 3 

first vessel 

second vessel 

Value 
Operating 
Point 

100 1/hr 
90 1/hr 

200 1/hr 
200 1/hr 

13 oe 
77 oe 
74 oe 
74 oe 
40 cm 

70 oe 
40 cm 

67 oe 

53 oe 
22 oe 
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Instrument a tion 

The hardware used for measuring and processing of the signals 
is the so-called PVS-system (Process Signal Processing System). 
It is :built around a LSI-11/23+ micro computer. 
The LSI computer is connected with a PDPH/23 mini computer on 
Which runs PRIMAL. 
Experiment definition is performed with PRIMAL. The measured data 
is transferred directly to the PDPH/23 computer where further 
analysis taKes place on-line with PRIMAL. 
The actuators (valves) controlling the water flows and sensors 
for measuring the water flows and levels are pneumatic. The 
sensors used for measurement of the various process temperatures 
are temperature sensiti ve resistors (Pt-10o> made of pla tinurn 
(range 0-100 oe) wi th a rel a ti ve accuracy of abou t 0.1-0.2 
0 e 
The sensor measuring the water flow measures the pressure dif­
ference over a flange. It can easily be understood that the 
relation between water flow and pressure difference is quadratic. 
Also the actuators themselves -the valves- have a non-linear 
relationship between input signa! and resulting flow through the 
valve. As a result from the gaugements the other instruments used 
are found to be nearly linear. Non-linear correction of the 
process signals may be performed with the results of the gauge­
ments. 
No special difficulties occurred during the measurements. The 
temperature in the second vessel T4 however suffered from a 
bad S/H ratio due to the smal! temperature variations and a 
quan ti sa ti on error of 0.1 oe. 
A non-linearity in the dynamic relations between the input varia­
bles 0 and Os the output variables exists due to the depen­
dency of the dynamic properties of the outputs on these inputs. 

Experiments for pre-analysis purposes and identification have 
been performed. During the identification experiments, test sig­
nals are superimposed on the process inputs 0 and Os· Ow 
and Ows have been held constant. 
MIMO estimates (with 0 and Os as inputs) as well as SIHO 
estimates (with 0 as input) with additive noise OI iginating from 
the secundary circuit are possible. 

Identification results 

To illustrate the dynamics of a number of output variables some 
results from identification are given. The results from the pre­
analysis phase in identification and the operations performed for 
proper conditioning of the data are described in chapter 4 and 5. 

The re sul ts from modeHing the dynamic 
process inputs 0 and Os and the 
T3, T 4• H3 and H4 are listed 
the necessary opera ti ons for conditioning 
performed. 

relations between the 
output variables T2, 
in figure 3.2. All 
of the data have been 
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For each dynamic relation the impulse response of the model is 
presented together with the simulation output residual computed 
wi th the application MODELTST. 

The following dynamic relations are presented: 

Input (s) 

a. G 

b. Q 
Gs 

c. Q 

Gs 

••• 

-o.& 

-··· 
-· .. 

Output (s) 

•• .. .. .... 

Figure 3. 2 .a Result from modelling the dynamic relation : 

.. .. 

G->T2 estimated with MARKOV, 1783 samples used 
50 parameters estima ted , sample time = 4 s . 
Simulation output residual = 6. 4 X 

In the 1mpulse response of T2 an inverse response exists. 
This inverse response occurs due to the fact that the tubes from 
the heat exchanger to the first vessel are not 1solated. The 
heated water looses energy during transport. The residence time 
depends on the flow Q (or Gs)· An increasing Q instanta­
neously leads to a decreasine residence time. As a result the 
water looses lesser energy and the temperature increases a lit­
tle. Only after the content of the tubes is passed, the tempera­
ture decreases due to the greater Q, In short, an inverse respon­
se may be observed. 
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)("1'11 A-

o.a 

o ... 

o.o 

-o.&. 

-o.a 

-o.• 
0 &.00 aoo aoo 

TZN•- •••• 

1 : Q -> T3, H3 

)("1'11 A-

o ... o 

o.o. 

o.oo 

-o.o• 

-o.&.o 

-o.~• 
0 

•••• 

2: Gs -> T3,H3 

Figure 3. 2 .l>. Results from modeHing the dynamic relation 
Q ( 1) and Gs ( 2) -> T3;H 3 estimated with 
IVM -LS . 891 samples used , model structure nA= 8 and 
nB = 6 , sampling time = 8 s . Simula ti on output resi-
duals T 3 5.68 :1. and H3 0.45 :1.. 

As can l>e seen from the impulse responses i t is possil>le to 
descril>e the dynamical l>ehaviour between Q;Gs and. T3 l>y a 
second order process with a time delay. Physically this is expec­
ted if we study the different elements in the path from Q;Gs 
to T3. An inverse response is found instead of a time d.elay 
due to the process property mentioned al>ove. The response to the 
water level H3 in the first vessel is nearly a first order 
process. 
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IICT4 ..... 

0.10 

0.0!! 

o.oo 

-o.O!! 

-o.10 

-o.1!! 

0 !100 1000 

TDe_ ~. 

1: 0 -> T.q.,H.q. 

0 1100 

TDe_ ~. 

2: Os -> T.q.,H.q. 

Figure 3 . 2 . c Resul ts from mo<1el11ng the <1ynam1c rel a ti on : 
0 ( 1 ) and. Os ( 2) -> T .q.;H.q. estima ted. wi th 
IVH-BT, 1492 samples used., mod.el structure nA=6 and. 
nB=6, sampling time= 15 s. S1mulat1on output res1-
d.uals T.q. 26.23 :1. and. H.q. o. 77 :1.. 

The dynamic relation between the inputs and. H.q. can be d.es­
cr i bed by a second ord.er process and the rel a t1on to T.q. by a 
third ord.er process with a time delay. Due to the quantisation 
error in the measured signa! T.q. a large simulation output 
resid. u al re sul ts. 
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§ 3. 3 IJ. Glass-Feeder Process 

Introduetion 

The product ion of modern glass prod u cts, for instanee square 
television tubes, make high demands on the quality of the glass 
to be used, wi th respect to: 

- a pure chemical composi tion , 
- no visual disturbances in the glass, 
- a constant absolute temperature and 
- a homogeneous temperature profile, in place. 

The purpose of the identification project is to design a control 
system for the feeder to meet the last two demands mentioned. 

Process Description 

The process may be divided in two parts: 

- 1 . the furnace where the glass is made and 
-2. the feeder where relaxation and temperature conditioning 

of the glass takes place . 

In the furnace glass is made out of sand and some ad di ti ves. Sand 
is constantly brought into the furnace by means of two special 
screws, one at each side of the furnace. The turbulent behaviour 
of the liquid glass in the furnace assures a proper mixture of 
all the components. 
Through a throat, at bottem level of the furnace, glass pours 
from the furnace into the feeder. The feeder is a rectangular 
canal. Two major compartments exist where the temperature of the 
glass can be affected. The feeder is several decimeters deep and 
wide and several meters long. The heigh t of the glass bed in the 
feeder is several decimeters. During experimentation a thorn was 
mounted in the opening of the spout by which a tube was made of 
the glass pouring out of the spo ut. Different possibili ties 
however exist for different production purposes. 

An analog instrumentation and signal conditioning system is 
used to measured 43 process signals. On 27 different spots in the 
oven and feeder temperatures are measured with thermo-couples. 
A schematic view of the furnace and the feeder is given in figure 
3.3. A list of the variables of interest is gi ven in table 3.2. 
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furnace 

'air 

feeder 

· thermo-couples 
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gas purners - -----
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Figure ~ Schematic view of the glass-feeder and the 
of the thermo -coup les in the feeder 

position 
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Process Signal ~ 
PICOS/PRIMAL 

Oven: 
INPUT 
GASTOT_T 
AIRTOT AL 
FURNPRES 
SMEL_HOT 
SMEL_B11 

Feeder section .1..! 

Input Variables 
F1_GAS 
F1_AIR 
COOL_AIR 

Output Variables 
FDFR_FA1 
FDFR_F11 
FDFR_F12 
FDMI_FA2 
FDMI_F12 
FDMI_F22 
FDBA_FA3 
FDBA_F13 
FDBA_F23 
FDSP _FA4 

Feeder sectien z 
Spout; 

Input Variables 
F2_GAS 
F2_AIR 

Output Variables 
FDSP_FLA 
FDSP_FL1 
FDSP_FL2 
FDSP _FM5 
FDSP _FM4 
FDSP_FM3 
FDSP _FM2 
FDSP_FM1 
FDSP_FMA 
FDSP _FR2 
FDSP_FR1 
FDSP _FRA 
FDSP _FA6 
FDSP _FA 7 
FDSP _F51 

Process Output : 
VELOCITY 
DIAMETER 
THICKNES 

Page 3. 10 

Description 

Input of raw material (sand) 
Gas input, furnace 
Airflow , furnace 
Air pressure, furnace 
Air temperature, centrum furnace 
Glas temp. oven, throat to the feeder 

Gas flow burners 
Air flow burners 
Flow of cooling air 

Air temp . , pos . 1 , feeder front 
Glas temp . , pos . 1 , depth 1 
Glas temp . 1 pos . 1 I depth 2 
Air temp . , pos . 2 1 feeder middle 
Glas temp . 1 pos • 2 1 depth 1 
Glas temp . 1 pos . 2 1 depth 2 
Air temp . 1 pos • 3 1 feeder back 
Glas temp . I pos . 3 1 depth 1 
Glas temp . 1 pos . 3 1 depth 2 
Air temp . I side sectien 1 

Gas flow burners 
Air flow burners 

Air temp . I left 
Glas temp • 1 depth 1 1 left 
Glas temp . I depth 2 I left 
Glas temp • , pos . 5 , center 
Glas temp. , pos. 4, center 
Glas temp. , pos. 3, center 
Glas temp . , pos . 2 , center 
Glas temp . , pos . 1 , een ter 
Air temp . , een ter 
Glas temp . , depth 1 , righ t 
Glas temp., depth 2, right 
Air temp . , righ t 
Air temp . 1 si de spo ut left 
Air temp., side spout right 
Glas temp. , center of the spout 

Veloei ty glass tube 
Diameter glass tube 
Thickness glass tube 

Table ~ Variables measured at the glass-furnace/feeder 
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In the feeder glass cools down to a tempera ture of abou t 1000 
0 e in the :pout. When cooling down the viscosity of the glass 
increases. 
The wall of the feeder is made of a ceramic material wi th a large 
heat capacity. The average residence time of glass in the feeder 
is about 1-2 hr. The glass floating in the middle of the glassbed 
(of a higher tempera ture) however has a smaller residence time. 
In the feeder temperature gradients with differences up to 
several tens oe exist. 
The control possibilitiesl heating and cooling of glass in the 
first section and heating in the second section1 can be used to 
reach the control system purposes: 

- stabilizing the temperature of the glass in the spout of the 
feeder to a ss ure a constant glass flow through the spo ut of the 
feeder and 
to create an -in place- homogeneous temperature profile to 

decrease tensions in the glass. 

The process ~ three interesting control yariables; 

-1 . the gas/air flow to the burners in section 1 . 
-2 . The cool air flow in section 1 to cool down the surface of 

the glass in the middle of the glassbed 1 with the air blowing 
along the glass stream . 

-3 . The gas/air flow to the burners in section 2 . 

Instrumentation 

The hardware used for measurement and pre-processing of the 
signals is developed by Pieos. This hardware is composed of: 

- analog signal conditioning cards for 
- anti-aliasing filtering 1 

- off-set value correction 1 

- amplification and 1 

- sealing of the process signals . 
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- ADC/DAC trans:formers (MIOS-system). 
- MicroVax 1 operating system ELN 1 used as measurement com-

puter (:front-end). 
MicroVax 1 operating system VHS on which PRIMAL is running. 

- Ethernet connenction between the two computers. 
- VT- 1 oo terminals . 
- A Tek -"U 25 graphics terminal 

All the equipment (with the exception of the terminals) has been 
build in a closed car. The software :for the :front-end is deve­
loped by PI COS and opera tes stand alone. PRIMAL runs on the VMS­
MicroVax. For proper communication with the :front-end a special 
purpose application (data handler) has been written :for PRIMAL. 

During experimentation measurement problems due to all kinds of 
disturbances in process and equipment occurred. 
For instanee micro-wave :furnaces were radiating not far :from the 
equipment car. A glass-bed depth sensor taking samples in the 
spout of the feeder disturbed the signals from the thermo-couples 
in the middle of the second feeder section. 
Because of grave disturbances some signals measured are not 
use:ful :for applica tion in the process identi:fication. 
The premeasurements per:formed wi th PRIMAL deli ver ed. 11 ttle 
results due to the measurement problems. 
A data-logger coupled to the existing process equipment sampling 
at a rate of 3 samples per hour d.elivered some information on the 
elementary process dynamics which could be used for the design of 
experiments :for identi:fication. 

Iden tifica ti on results 

The various aspects and results :from the pre-analysis phase in 
identi:fication of the feeder are described in chapter 4 and 5. 

Some interesting results :from modeHing the d.ynamic behaviour 
between the three process inputs mentioned and. a number of 
temperatures measured at various places in the feeder are presen­
ted in figure 3.4. Estimation has been per:formed on fully condi­
tioned process data. 
Presented are the transient impulse responses, simulated with the 
estimated models 1 and the simulation output residuals, comparing 
the model behaviour with the real process behaviour measured.. 
The latter has been per:formed on the data used for estimatlon 
('best fit'). 
Resul ts fl:Q1I1 three dynamic relations ~ presented . namely ; 

Inputs 

a. F1_GAS 
COOL_AIR 
F2_GAS 

b. F1_GAS 
COOL_AIR 
F2_GAS 

c. F1_GAS 
COOL_AIR 
F2_GAS 

Outputs 

FDMI_FA2 
FDMI_F21 
FDMI_F22 

FDSP_FM1 
FDSP_FL1 

FDSP _F51 
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0.8 

0.15 

o.• 

0.2 

0.0 

-0.2 ~----------~--------------------~--------~ 
1: F1_GAS -> FDMI_FA2 (M11), FDMI_F21 (M12), FDMI_F22 (M13) ...... .. ... . ... 

2: COOL_AIR -> FDMI_FA2 (M21), FDMI_F21 (M22), FDMI_F22 (M23) 

0 100 200 300 

3: F2_GAS -> FDMI_FA2 (M31), FDMI_F21 (M32), FDMI_F22 (M33) 

Figure 3 . 4. a Resul ts from modeHing the dynamic re la ti on : 
Inputs -> FDMI_FA2i FDMI_F21 and FDMI_F22 estimated 
wi th MARKOV , 912 samples used , response length = 6 5 . 
Simulation output residuals : FDMI_FA2 : 2. 98 ~, 
FDMI_F21 : 3.64 ~ and FDMI_F22 : 6.47 ~ 
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0.115 

0.10 

0.015 

0.00 

-0.015 

-0.10 ;-------------------------1 
1: F1_GAS -> FDSP_FL1 (FL1) 1 FDSP_FH1 (FH1) 

2: COOL_AIR -> FDSP_FL1 (FL1) 1 FDSP_FM1 (FH1) 

o.e 

o . .c 

0.2 

0.0 

~.2 ;-----~~----~---------~-------~ 
0 100 200 300 

3: F2_GAS -> FDSP_FL1 (FL1) 1 FDSP_FH1 (FH1) 

Figure 3 . 4. b Re sul ts from modeHing the dynamic re la ti on : 
Inputs - > FDSP _FL 1 and FDSP _FM 1 estima ted w i th 
IVM -MS 1 912 samples used 1 model structure nA: 5 1 

nB:5 1 nC:3 and nD:2. 
Simulation output residuals : FDSP _FL 1 : 2. 25 X 1 

and FDSP_FM1 : 8.96 X 
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o.oa 

o.oa 

o.o .. 

0.02 

0.00 

-0.02 ~-----T------r--------......------J 

1: F1_GAS -> FDSP_F51 (M11) 

2: COOL_AIR -> FDSP_F51 (M21) 

0 200 

3: F2_GAS -> FDMI_F51 (M31) 

Figure 3. 4 .c Results from modeHing the dynamic relation: 
Inputs -> FDSP_F51 estimated with MARKOV 1 912 
samples used I response length = 6 5 . 
Simula ti on output residu al : 1 . 4 3 ï. 
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As mentioned is the main purpose of this identification project 
the development of a model of the dynamic behaviour of the pro­
cess for control system design purposes. Identification however 
often also increases process understanding. 

From the estimated models the following, prudently, conclusions 
can be dra wn: 

- If we study the impulse responses of the temperatures in 
tion 1 of the feeder we can observe two interesting 
properties : 

sec­
process 

-1. The impulse responses of the various temperatures in the 
feeder are almost instantaneous for all depths, as 
well for the gas flow (F 1_GAS) as for the coolair input 
(COOL_AIR). 
A possible reason for this is tha t the main mechanism 
for heat transport is ra dia ti on . The largest ra dia ting 
object in the feeder is the surface of the feeder roof. 
Burning gas as wen as coolair have immed.iate influence 
on the temperature of this surface. 

-2. After the fast response a slow tail 
originates from the heating or cooling of 
wall d.ue to the impulses in the inputs. 

occurs 
the 

which 
feeder 

- The latter can be observed. in the impulse responses of the 
temperatures in the mid.d.le of section 2. 
The responses of the temperatures at the wall of the feed.er 
have a much more pronounced. tail then the temperatures in the 
mid.d.le of the glass bed.. This effect is caused. by the d.ifferen­
ces in resid.ence time of the glass at the sid.e and. the mid.d.le of 
the feeder. 
The response in the spout of the feeder is almost totally 
affected. by the gas flow in section 2. The control variables in 
section 1 have hard.ly any effect on the temperature FDSP _F51. 
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Chapter 4 . EXPERIMENT DESIGN Ili PROCESS IDENTIFICATION 

§ 4 . 1 Intro(iuction 

Generally two types of environments for identification pro­
jects can be distinguished: 

1 ) H.Q :tä! signals QD. 1.h.e process allowed . 

In an industrial surrounding often normal operating conditions 
may not be disturbed by application of input test signals. Only 
natural process data is available trom logged inputs and outputs. 
Often the process signals do not contain enough information to 
model the dynamic behaviour of the process. correlations between 
noise and input signals may exist due to control loops operating 
during measurement. Appl1cat1on of the different identification 
methods may not be sucessful due to a bad S/N ratio or the number 
of observations too small. 
Generally the identification methods in PRIMAL do not tunetion 
properly if little data with a low information content is avai­
lable. No appl1cat1ons to tackle these kinds of identification 
problems adequately are available (yet). 

2 ) I.c§1 slgnals allowed lUll restricte<1 . 

If experiments are allowed but· normal process operation condi­
tions may not be hindered too much with respect to the amplitude 
of the input test signals or the length of the experiments, 
design of experiments and especially optimal experiment design 
becomes very important. No attention has been given to optimal 
experiment design in the PRIMAL project yet. 
Experiment design is one of the major steps in an ldentification 
project. It determines the 1nformat1on content of the measured 
process data, which sets a Hmi t on the achievable performance in 
the modelling effort. 

When sufficient experimental freedom is allowed concerning the 
test signals, there seems to be no real problem in gathering 
appropriate data for parameter estimation. With some simple rules 

' proper design of experiments for identification is possible. 

Two types of experiments in ident1ficat1on can be d1st1nguished: 

-1. prel1minary experiments for pre-analysis of the dynamic pro­
cess properties 

-2. experiments for identification. 

Prior to, with some simple rules, identification experiments can 
be á.esigned, a thorough analysis of the elementary dynamical 
process properties has to be performed. If not enough knowledge 
about the latter is available preliminary experiments have to be 
carried out. 



EXPERIMENT DESIGN IN PROCESS IDENTIFICATION Page 4. 2 

These exper1ments may also be used 
standins of the process dynamics 
con ditionins of the measured data, 
da tion. 

for obta1n1ng a better under­
which might be useful Wlth 
parameter estimation and val!-

With the Some aspects of the pre-measurements phase together 
results from the studied processes are discussed in 
4.2. 

paragraph 

Some aspects of experiment design for identif1cat1on are dis­
cussed in parasraph 4.3. 

§ 4 . 2 Preliminary Experiments 

In the pre-measurements phase a number of preliminary experi­
ments are performed to determine the elementary d.ynamical proper­
ties of the process. This 1nformation is need.ed. for the appropriate 
design of experiments for identification. 
The goal of this phase is to determine the following experiment 
parameters: 

-1. the process inputs and outputs 
-2. the appropriate sampling ra te T0 , 
-3. input test signals (type ,amplitude ,spectra) 
-4. the duration of the experiment N. T0 (1d.ent1fication 

time). 

To d.etermine these parameters in forma ti on is needed. on the follo­
wins process properties: 

-1. Steady state gains Kio of all the input-output rela-
tions of interest, (sensivity analysis), 

-2. dominant time constants ~i (first order process 
ap proxima ti on ) , 

-3. time delays ~d , 
-4. llnearity 1 non-linearity in the operating point: 

C in PRIHAL only applica ti ons for estima ti on of linear 
roodels are a vailable ) 

- static (e.g. instrument) non-linearitles: Y=f (u) 
with f a nonlinear function in u or 

- dynamic non -lineari ties 
Or other non -lineari ties like : 

- hysteresis or 
- saturation 

-5. spectrum (bandwidth) of the process signals and if pos-
sible of the noise, disturbances occurring in the pro-
cess signals dur ins normal process opera ti on , 

-6. dynamic ranges of the process signals, 
-7. stationarity of the process, 
-8. technical constraints, e .g limits on the measurement 

time N .T0 , the amplitude A of the input test signals 
or the shape and frequency pattern of the input test 
signals. 
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The sampling rate is an experiment parameter that has to be 
determined in the pre-measurements phase. Often this 1s not a 
critica! cho1ce. Relatively fast sampling with respect to the 
dynamics of the process will generally be adequate, 10 or more 
samples within the dominant (first order approx1ma tion) time 
constant will be sufficient. 
Also the amplitude of the test signals to be used in the 
preliminary experiments has to be chosen. 
Durins the experiments these parameters values may be adapted 
according to the k.nowledge gained. 

In the preliminary experiments a-periodic test signals like step 
and erenel functions have been used to gather knowled.ge about the 
d.ynamic properties 1 to 4 mentioned. in the list above. 
They are easily applied to the process. In 11 ter a ture (see Rake 
/14/ and. Ströbel /18/) many method.s are presented. for estimation 
of parameters of 2-nd and. higher order mod.els w1th time delays 
from step responses. Here only the parameters of the process in 
first order approximation are estimated. Information about the 
d.ynamic properties in first order approximation is sufficient for 
the design of identification experiments (see parasraph 4.3). 

Process properties like steady sta te ga in K, time constant T 
and. time d.elay Td. can be d.etermined. from the output 
s1~ma1s responses on a step input test signa!. 
Invest1gation of the linearity of a process in its operating 
point with erenel functions applied to the process is possible by 
observing these d.ynamic properties as tunetion of the amplitude 
of the test signa!: {K,T,'t'd.l = f(A). 
Another method. 1s performing experiments for id.ent1f1cat1on with 
different amplitudes of the input test signal(s) and comparing 
the modelling results later. 
With both processes studled 11nearity of the dynamic relations is 
investigated with use of erenel functions. From the trans1ent 
response of each step in the erenel tunetion x: 1s determined as 
function of A. Other process non-linearitY like hysteresls is 
easy to stud.y wi th crenel-function input sisnals. 

The pre-measurements phase in identificat1on 1s not efficient. 
The step responses are easily d.isrupted by signal disturbances 
lik.e trends, which makes 1 t hard. to de termine the process para­
meters accu ra tely. 
The feeder process step responses suffered heavily from low 
frequency drifts. Determination of the d.ynamic properties was 
difficult due to these signal drifts. In fisure 4.1 some step 
responses from glas temperatures in the feeder are g1ven. The 
amplitude of the input test signals used. 1s 10ï. of the normal 
operating condition values. 
For MIMO processes an analysis using step responses is very time 
consuming and. gives little informatlon. Generally only the most 
important sub-processes are studied. The information from these 
sub-processes is used for experiment design for id.entification of 
the whole process. 



EXPERIMENT DESIGN IN PROCESS IDENTIFICATION Page 4.4 

At the step response analysis of the feeder the input signals 
applled to the three feeder inputs have been offered 1n the 
pattern listed b~low: 

with 1 = +10 % and 0 = -10 % of the operating POlnt values of the 
inputs <= 0 ï.), 8 steps have been performed, only one step each 
time. 

Input 

F1_GAS 0 0 0 1 1 0 0 1 1 

COOL_AIR 0 1 1 1 0 0 0 0 1 

F2_GAS 0 0 1 1 1 1 0 0 0 

I I I I I 

r -
1----.,_ ·o- .•• -·e·- 'b..__ 

-"- ,~ ........ _ '·, 
'..t.. &>.... -, Fli ~ .---e----~----E>-- .-o · 

r---------- -- .. ......_""*--- -o-----0!>---..... -- -
----. • . ---- LL .l<.~ -::!-: 

-----Et!_ ,- ----------.. _"., 

-

I I I I I 

I ':'!t'-
....AJ"-­

o'" ··0 .--· 0 -· '-......_ 

K'.'· ..... ·--o-·....,--11-· ---&--..,-~.--·_-o_--,..-+-_,_;!!:J:_. ~ .... c 

-----·-- _FEL--·---·- --------... _ ----- ------ ----- .. 

f)-r . 
. 0 .. --E>-- --o ..- ,... 

,.ç, ___ ..... - .. .,-~" 

·----· ------ ·- ---r-·---

Fisure ~ step responses in the feeder spout temperatures: 
FDSP _FL 1 , FDSP _FL 2 and FDSP _F 5 1 . 
A = 1 o % of val ue normal opera ting con di ti ons 
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As can be seen in figure 4.1 the transient time of 
responses, for the feeder temperatures in the spout, 
grea ter than the time period (=1 [-)) between two steps. 
transient time is hard to determine due to slow drifts. 

the step 
is about 
The real 

The time constants T of the feeder temperatures for all three 
inputs is about 0.25. The time delay in the response of FDSP _F51 
is abou t 0.05 for the inputs Fi_GAS and COOL_AIR. 

From the erenel function experiments in the feeder proJect little 
useful information resulted concerning the linearity of the pro­
cess in the operating point due to shortage of time and measu­
rement problems. 
The selection of the amplitude of the input test signals used in 
the experiment for identification is based on the results from 
the sens i vi ty analysis. 

Some results from the step responese 
thermal-hydraulic process concernlng the 

experlments on the 
process properties T 

and Td are gi ven in table 4.1. 
values are determined for the different output 
step responses. The amplitude A of the input 
abou t 20 1/hours. The step is applied to Q, 

T Td Tg5 
Process 
output [S) [S) [S] 

Ti 20 2 50 
T2 30 10 60 

vessel 1 
T3 70 30 100 
H3 80 0 230 

vessel 2 
T4 250 100 1200 
H4 1000 0 1700 

Also the T95 t 
variables from the 
test signal used is 

Table LJ Results from the step response experiments of the 
thermal-hydra ulic process 

From the transient response of each step in the erenel function 
K as function A has been determined for a n umber of process 
outputs 1. Non-linearitles lik.e hysteresis have not been found. 

1: The val ue T95 of a step response is the time at whlch 
95ï. of the steady state value is reached. 
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Sta tic non-llneari ties of the form y = f(u) can be found from the 
results of the gaugements. For the thermal-hydraulic process two 
non-linear relations were found. The valve centrolling the cold 
water flow Q is non-linear and the flow measurement sensors 
produce an output signal (a pressure) non-linear wi th the flow. 
Another way to study a (possibly) non-linear relation is fre­
quency-analysis of the output signal in application of a sine 
input signal (Meerman /25/). Harmon1cs in the spectrum occur if 
the input-output relation is non-linear. This can be seen easily 
by fourier transformation of the taylor sequence of the function 
y : f(U), 
From the results of the sensitivity analysis, using step func­
tions, an estimation of the dynamic ranges of the process signals 
is possible. Toeether with the results from the linearity analy­
sis an adequate amplitude of the input test signals for identi­
fication is determined. 

Sta tionari ty of the process can be observed by examining the 
process signals under normal opera ting condi ti ons. Th is may also 
be used for analysis of the disturbances in the process signals. 
Speetral analysis of these disturbances might be of help in later 
steps of the process analysis e.g. determina t1on of the proper 
trend filter. 

In the analysis of the thermal-hydraulic process some 
experiments have been performed using gaussian white noise test 
signals. Speetral analysis is useful for determination of the 
frequency band of the process. Especially for HIMO processes wi th 
dynamic relations with different time constants (see table 4.1 
vessel 1 and vessel 2) this experiment parameter is important. 
The dynamic relations of interest in the spout of the feeder all 
have time constants of the same magnitude as ca.n be seen from the 
responses of the step input signals. Some simple rules based on 
the est1ma ted time constant, can be used for design of an identi­
fication experiment. A description of these rules is given in 
paragraph 4.3. 

§ 4 . 3 Experiment Design f2r Process Identification 

To design input signals for process identification a number of 
experiment parameters have to be determined. 
An acceptable est1ma ti on of the process parameters wi thin the 
length of the experiment must be possible. 
The experiment parameters of interest are: 

-1 . signal type; 
kind of test signal to apply to the process inputs , 

-2. bandwidth B; 
frequency band in which the test signal ex ei tes the 
process, 

-3 . sampling ra te T 0 , 

-4. amplitude A 
-5. experiment length N; 

n umber of records to be taken . 
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A n umber of simple rules have been proposed by different a u thors 
to determine the experiment parameters. 

The first choice that has to be made concerns the type of the 
input signal. It is determined by the concept of identifiability 
of a process which is a joint property of an identification 
experiment and a model estimation. It establishes that the model 
parameters can be estimated conslstently from the <1ata obtained 
from the process. 
This means that the parameter estimates a converge to their 
"true" values a* for the number of observations N tending to 
in fini ty: 

( 4 . 3 . 1 ) lim (a - a* ) : 0 
N->ro 

I<1entifiability of the process <1epends on a number of factors: 
(Norton /23/) 

-1. scope ànd quality of the observations which is relate<1 to the 
conditioning of the measure<1 process data (see chapter 5) I 

-2. nature an<1 location of the inputs relate<1 to the <1esign of 
experiments for i<1entificationl 

-3. parametrisation I model structure selection an<1 
-4. properties of the estima tion algori thm . 

The requirements on input signals in an identification experiment 
to ensure adequate ex ei ta ti on of the process long enough to 
permit the estimation to converge are called "persistency of 
exc1tat1on con<1itions". These con<1itions specify how many inde­
pen<1ent components have to be present in the input signal. 
A <1eta1le<1 <1escr iption of the con di ti ons of an input signal {u) 
to be persistently exci ting can be found in Norton /23/. 
Persistent excitation implies that the power speetral <1ensity 
41uu<w> of the input signal does not vanish insi<1e the 
frequency range that has to be identified 
wmin ~ w ~ wmax· 
Practically the input signal ban<1width must at least be compa-
rable to the process bandwidth. 
Non-zero power at a minimum number of frequencies may ensure 
asymptotic convergence but <1oes not guarantee satisfactory finite 
sample performance. A lso the energy in the input signal is of 
importance. 

A convenient <1eterministic signal which satisfies these proper­
ties is the so-calle<1 pseu<1o ran<1om binary noise signal (PRBNS). 
A <1etailed descr iption of this signal can be foun<1 in Eyk.hoff 
/13/ and van den Boom et. al. /6/. 
The PRBNS has an approximate white spectrum up to a certain boun­
dary frequency determined by the sampling time T 0 and the 
minimum pulse duration T (=À.*To> of the signal chosen. 
The amplitude A of the two signal levels is constant. By changing 
the minimum pulse duration the frequency range can be modified. 
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De term i na ti on of these three signal parameters can be performed 
with a trial and error approach: from selection of the experiment 
parameters foliowed by a model estima tion and successi ve valida­
tion back to experiment parameters selectl.on until an appropr1ate 
model is achieved. This in fact is the fourth loop in the metho­
dology in process identification mentioned in chapter 2.2. 

Another way is to use the simple rules as mentioned by various 
authors, Isermann /171 and Eykhoff /13/. A rule described below 
used in identification of the feeder process to determine the 
frequency range to enhance proved to be very useful. For proces­
ses like the thermal-hydrauuc process with dynamic relations 
with different time constants different experiments migh t be 
needed. 

The first important parameter of the PRBNS to be determined 
concerns with the bandwidth of the input test signa!. 
The boundary frequency f 0 of the PRBNS is the frequency up to 
which the signal has an approxima te "whi te" spectrum. This val ue 
is determined by the minimum pulse durauon time T. f 0 = 1/T 
With T : Tow)., 
The power speetral densi ty of a PRBNS is gi ven by: 

(4. 3. 2) 

[ 
s 1 n ( 11' fT) J 2 c:o 211' 

~(f) : A2.T . E a(211'f-k.--) 
ll'fT k:-c:o Tr 

with Tr the cycle time of the signal (see van den Boom /6/). 

Determination of T can be performed with the following rule: 

generally: the fastest varlation in the input sisnal must lead to 
a visible change in the output variables. This fastest varlation 
must be sampled at least 5-10 times. 

- Determine the bandwidth B of the process. In first order pro-
cess approxima t1on B = 1/'t . In a HIMO process the smal-
lest time constant has to be taken. 

- Take the frequency B2o at which the power speetral density 
4> (B 20 ) of the process has decreased about 20 dB with 
respect to 4> (B) . 
For a first order process the frequency B2o is about 5wB. 

- The boundary frequency of the PRBNS is chosen: 
f 0 : B 20 : 5wB : 5/'t (Hz), 
and thus the minimum pulse d.uration time: T = 't/5 s. 
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The sampling time T0 is chosen 1/5-1/10 of the minimum pulse 
d u ration time T ex = 5 10) to prohibi t aliasing in the 
spectra of the process signals. Also easy repair of the distur­
bances· in the process signals is possible if enough samples are 
available. The frequency range enhanced, although the input power 
den si ty spectrum is not "Wh i te" an ymore, by the input signal in 
fact runs to 1/T0 • Process modes may be studled up to the 
Hyquist frequency f = 1/2.T0 Hz. The data redundancy is used 
to repair disturbances in the measured process signals. 

For low-pass processes Isermann /171 gives the following rules 
for determina ti on of the sampling ra te T 0 : 

1 ) using the Shannon's theorem : 

T0 = W/Wmax with Wmax such that 

I H(Wmax> I = 0.02 .. 0.1 
of the value at the pass band . 

2) with the estimated time constants: 

and 

T0 /TE = 0.18 ... 0.36 With 

TE = (ETa>numerator - (ETb>denumerator + 
(Tt>time delay 

3) using the transient time T95: 

T0 /T95 = 0.09 ... 0.18 

Rules 2 and 3 have been used for the thermal-hydraulic process. 
Due to the different time constants of the dynamic relations the 
choices have been made dependent on the relations of interest. 
For identification, within one experiment, of T2, T3 and 
H3 T = 16 s has been chosen. For identification of T3, 
a3 , T.q. and H.q. T = 30 s. has been chosen. 
As will be clear from these rules the selection of Tand T0 
is not really critical. As long as the process modes of interest 
are sufficiently excited no real problems w111 occur. 

In the first rule the sampling time is immediatly related to T 
(T0 = T/X). The selection of the sampling time however is 
also influenced by: 

- possible aliasing which might occur in the spectra of the 
process signals if T0 is chosen too large and no 
hardware anti-aliasing filters are present. 

- easy repair of signal disturbances if enough samples are 
available, 

- the sampling time in application of the derived model, 
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- accuracy requirements of the model; the influence of 
ga in 

sampling 
T0 on the accuracy of the estimated steady state 
K has been studled by Isermann 1 171 . Wi th a small 
time the estima ti on becomes inaccurra te . 
Also the numerical conditioning of the estimation methods 
is influenced by the choice of the sampling time. A small 
sampling time might lead to sigularities in the estimation 
methods. 
If the sampling time is chosen too large the dynamic 
behaviour is not described precisely. The model order 
reduces. Fast dynamics can not be modelled. 

The decima tion factor Wh i eh can be chosen in analysis of the 
measured process signals is limi ted to the range [1,X) for a 
PRBNS. For later analysis it is therefore not convenient to 
choose a prime number for x. 

The amplitude of the test signal is determined by the results 
from the sensivity analysis. The amplitude has to be chosen such 
that all the process modes of interest are sufficiently excited 
by the input signal. Technica! 11m1ts and the results from the 
Hneari ty analysis however restriet the allowable ampl1 tude of 
the 1npu t signal. 
At both processes studied non-Hneari ties were found not to play 
a significant role in the 1dent1fication. 

The length of the identification experiment H 1s determined by 
the number of samples required for adequate estimauon of the 
parameters of the system. Desired model accurracy, the time 
available for the experiments and the S/H ratio play a role here. 
For the feeder about 12000 samples have been taken in the identi­
f1cat1on experiment. With a sampling time of 1 s. With X:10 
1200 samples remained after deelmation of the measured data. 
For the thermal-hydraulic process H depends on the studled dyna­
mic relation. For identification of the output variables of the 
second vessel experiments of about 7 hours have been performed. 

To study the effects of the experiment parameter concerning the 
bandwidth of the input signal a number of experiments have been 
performed with varying boundary frequencies of the PRBHS. The 
sampling time used in the experiments is 2 s. A total of 3600 
samples have been taken. The amplitude applied to Q is about 20 
1/hours. 
A total number of five experlments have been performed wlth X 
2, 4, 8, 16 and 32 s for the primairy circuit and 1, 2, 4, 8 and 
16 for the secundairy circuit. 
The dynamic relations studled are the SISO process with input a 
and output T2 and the MIHO process with inputs a and Os 
and outputs T3 and H3. 
Decima tion of the measured samples of the data sequences is 
performed w1 th the maximum factor allowed (determined. by the 
secundairy c1rcu1 t: 1 (exp.1), 2 (2), 4 (3), 8 (4) and 16 (5)). 
As well as the frequency range enhanced. as the sampling time 
after reduction varies. 
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Two identification methods have been used: 

- non-parametrie identification with HARKOV; the ratio between 
the number of samples available and the number of markcv-para­
meters estimated is constant, 

- and a parametrie identification with IVH. 

The resul ts of the estima tions are presented in 
1mpulse responses are presen ted together w i th 
result in an output error simulation on the data 
ti on. 

figure 4.2. The 
the valida ti on 

used for estima-

In teresting aspects: 

1. The equation error est1mat1on IVH-LS of the SISO process fails 
in data sequence 1 (with T = 2 s.) due to the inverse response 
of the process . 
Th is effect may possibly be explained by the fa ct tha t an 
equa ti on error parameter estima ti on method uses the measured 
output signals in the estima tion cri terion . The pred.ietion 
(high frequency) behaviour of the equat1on error model will 
generally be good. It can be proved (van den Boom /6/) that 
the first impulse response samples are est1ma ted very good by 
an equa ti on error method . 

2 . The equa t1on error est1ma ti on IVH of the MIMO process leads to 
unstable models for the data sequences 4 ( wi th T = 16 s . ) and 
5 (with T=32 s.) for model orders {nA;nBl higher then {2;2}. 
Model order reduction occurs due to the large sampling time 
after deelmation. This can be seen clearly in the estimates of 
the SISO and the HIMO process for high sampling time values T 
after deelmation. In estimation of too high order models, if 
the measured data is not rich enough, pole-zero cancellations 
of poles outside the unit circle might fail. In study of 
the pole -zero plots of the estima ted unstable models this 
is seen. 

3. The output error estimation MARKOV of the SISO and the MIMO 
process is at all data sequences successful . Al though 
times oscillations occur in the parameter est1mat1on 
non-parametrie estimator markov robust with respect 
experiment parameter concernins with the band width 
input signal and the sampling time after deelmation. 
case a model is estimated with a good output simulation 
viour ( see figure 4. 2 ) . 

some-
is the 

to the 
of the 

In any 
beha-

4. The estima t1on of the nearly first order process from Q to 
H3 is at all experiments succesful. 
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Figure 4. '2 .a Estimation results (MARKOV) on the dynamic relation 
G->T2, N:3600, T0 = 2 s. Decimat1on factor = 
1, 2, 4, 8 and 16. Simulation output residuals 

1. 3.74 x 2. 6.42 ï. 3. 8.54 ï. 4. 5.38 x 5. 2.81 ï. 



EXPERIMENT DESIGN IN PROCESS IDENTIFICATION Page 4. 13 

x-.... 
···-.... .... ..... .... 

-. ... 1 
0 - .... ..-... __ -·-..... - --- ---·---·-----· .... .... 

~·· 
... --

________ , 
-•·o• 
-..... 
--··· -···· -··-- --- - --......,....--. I I 

0 •• .. .. .._ ... __ -·· ·-
o.o 

-o.& 

-··· 
-··· 
-0.4 

0 - .... .. .. ....... _ •... ..... 
o.o 

-··· 
-o.4 

-··· 0 •• .. .. .._ 
...... ._ -·· ..... 

o.o 

-··· 
-··· 
-··· 
-··· • •o .... .. .. .... __ -·· 

F1gure 4. z . 1:> Est1ma t1on re sul ts < IVM ) on the 
Q->T 2 , N=3600, T0 = 2 s., Deelmation 
1, 2, 4, 8 and 16. Simulation output 

1.120.30 ï. 2. 16.78 ï. 3. 8.66 ï. 4. 5.39 ï. 

I 

2 I 

3 

4 

dynam1c relat1on 
factor = 
res1d. u als : 

5. 2.70 ï. 
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FJ,gyr~ 4.2.c Estimation results (HARKOV) on the dynamic relation 
G;Gs ->T 3;H 3 , N : 3600, To = 2 s. 
Deelmation factor = 1 • 2, 4, 8 and 16. Simulation output residuals 

T3: 1. 55.33 ï. 2. 7.26 ï. 3. 5.04 ï. 4. 5.88 ï. 5. 28.93 ï. H3: 1 . 3.51 ï. 2. 1. 59 ï. 3. 2.28 ï. 4. 0.30 ï. 5. 0.47 ï. 
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El.gl6:ce ~·*·~ Es tirnation results (IVH) on the dynamic re lation 

Q;Gg ->T 3;H 3 I N = 36001 To = 2 s. 
Decimation factor = 1 I 21 4-1 8 and 16. Simulation 
output residuals: 

T3: 1. 56.31 ï. 2. 9.36 ï. 3. 3.68 ï. 4. 9.73 ï. 5. 28. 18 ï. 

H3: 1 . 1. 69 ï. 2. 0.81 :1. 3. 0.45 ï. 4. 0.22 ï. 5. 0.27 ï. 
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§ 4 . 4 Conclusions 

The simple tools usec:1 c:1uring the pre-measurement phase li:Ke 
step responses for determination of sensiti v1ties, time constants 
and time delays and erenel functions for investigation of 
linearity of the process in its operating point are found to be 
easily distur:bed. Little information is gathered in relatively 
long experiments. 

Hany empirica! rules exist for the design of experiments for 
identification based on the information about the dynamic process 
properties. A global investigation of the 11near1ty of the pro­
cess in 1ts operating point with respect to the determination of 
the amplitude to be used in the identification experiment is 

11 

sufficient. Also is it possible to determine an adequate band 
width and sampling time of the input signal based on an estima­
tion of the smallest time constant of the process. 

If excitation of the process is adequate (visible) and enough 
data can be ga thered no re al problems exist. The measured data 
from practical processes however generally contains all :Kinds of 
distur:bances. The next important step in an identification proce­
dure therefore is the conditioning of measured process data for 
identification. This is discussed in detail in chapter 5. 

The performance anc:1 behaviour of the identification method 
HARXCV using an output error criterion for parameter estimation 
is found to be rather insensitive with respect to the experiment 
parameters. The first step in the estimation method IVH (IVH-LS) 
using an equa ti on error sometimes fails. If the sampling time 
(after c:1ecima tion) is small wi th respect to the dynamics of the 
process problems wi th inverse responses can occur. If the 
sampling time is large and the information content of the measu­
rement data is low problems in estimation of high-order models 
can occur. 
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Chapter 5 . l&1a Conditioning 1D Process Identification 

§ 5 . 1 Introduetion 

The set of raw input-output measurement data collected during 
experiments on practical (industrial) processes is seldomly 
suited for direct use in analysis and identification. All types 
of disturbances appear in the data which have to be removed 
before identification can be performed. 

Before the data is filtered 1 first a thorough analysis of the 
data has to be performed. Speetral analysis is used to check H 
the frequency range enhanced by the input signal is adequate (see 
paragraph 4.3). Wi th speetral analysis also a first 1mpress1on of 
the possible disturbances 1 low or high frequent may be obtained. 

Visual inspeetion of the measured data for outliers and other 
disturbances is the next step to be performed. Hot all ou Uiers 
in the data can be filtered with an automatic routine. Some of 
the outliers have to be repaired manually. 
In paragraph 5.2 the applica tion FILTER for conditioning of 
measurement data is discussed. Paragraph 5.3 treats a protocol 
for solving an important question in data conditioning : how do 
we determine the proper filter for removing the trends from the 
measurement data? 

§ 5 . 2 J2älà Conditioning iD PRIMAL; 
:th.f: Application FILTER 

In PRIMAL only an (on-line) application named PREFILTER was 
available for filtering of the measurement data. This application 
supports reduction of measured data by means of averaging a 
contiguous set of samples with gi ven length and trend filtering 
with a moving average or an exponentlal filter. For application 
of PRIMAL in identification of industrial processes this proved 
to be insufficient. An off-line application named FILTER was 
developed for pre-processing data. 
A number of operations are provided which may be applied indepen­
dently from one another. The supported operations are: 

- 1 • Signal Selection I 

-2. Delay Correction 1 

- 3 . Signal Repair I 

-4. Filtering of Outliers 1 

-5. Static Hon -Linear Correction I 

-6. Trend Correction & Hoise Reduction I 

-7. Data Reduction, 
-8 . Offset Correction and Sealing . 

The different operations are discussed now seperately. 
Attention will be spent to the meth~'~ds applied in the different 
steps and some important aspects. 



DATA CONDITIONING IN PROCESS IDENTIFICATION Page 5. 2 

Step 1 : SIGRAL SELECTION 

In the first step a group of signals and the range of samples 
from these signals is selected from the process data. 

Step 2 : DELA Y CORRECTION 

After estimation of the time delays in the process signals with 
correlation analysis or 1mpulse response est1mat1on 1 correction 
may be performed. 
In this step a delay correction may be specified for each selec­
ted signal. A pos i ti ve delay d means the signal is shifted for 
d samples to the future (with respect to the original time 
index). Because of this shifting d samples preceding the selec­
ted startsample are shifted into the range. When such samples are 
not available the first sample is repeatedly shifted in (and has 
therefore extra weight). Analogously a negative delay shifts in 
samples at the end of the range. 

Typically delay correction is useful in the following cases: 

- when the dynamic response of an output signal to an 1npu t 
signal is delayed for a large, fixed time interval (transporta-
tion time • delays in sensors 1 •• ) • often the delay is known and 
not interesting. However 1 when it is not taken into account 
explic1 tly 1 1 t leads to unnecessarily high order models . 

- restoration the natural interrelation of the signals. When 
measured process signals are used as inputs for the model the 
input signal should be corrected for the delays 1ntroduced by 
the measurement itself. Otherwise apparent non-causal behaviour 
of the output on the input might result. 

Step 3 : SIGHAL REPAIR 

During da ta-aquisi ti on in practice all kinds of signal dis­
ruptions are possible that do not represent dynamica! behaviour 
of the process1 but which are the re sult of sensur fail ure or 
other equipmen t malfunctioning. Repair is necessary when the 
disturbances have a high energy content. 
It is often very difficult to automatically recognize and repair 
these disruptions. The human eye however proves to be most 
succesfull in recognizing disturbance patterns. FILTER therefore 
provides facilities for the user to manually repair the signals. 
The user selects so-called 'repair intervals'. A repair interval 
consists of a signal name 1 a begin sample nb, an end sample 
ne and a repair method. The range of samples nb 
ne of the selected signal will be repa1red1 using one of the 
following methods: 
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MEAR The signal val ues are replaced by the signal mean , 
calculated over the sample range specified in step 
1 minus the selected repair intervals. 

INTERPOL: The signal values are replaced by values resulting 
from a linear interpolation between the signal 
value at sample nb -1 and the value at sample ne+ 1 . 

CONSTART: A specHied constant value is added to the actual 
signal values in the specHied range. 

REPLACE: A specHied constant value replaces the actual 
signal values in the specified range. 

Step 4-: FILTERING of OUTLIERS 

In (statistica!) literature a number of outlier detecting 
algorithms are proposed. After application of a regression, be­
tween the independent and dependent variables, outHers in the 
dependent variables can be detected by observing the residuals of 
the dependent variables. In data from practical processes however 
outliers may be found as well in the outputs as the inputs. 
FILTER offers several routines which treat the signals indepen­
dently. In application of the outlier filter one has to remember 
that outliers generally have a high energy content with great 
influence on the varianee of the unfiltered signal. In selection 
of the parameter con trolling the performance of the detection, 
the "Shaving Strength", therefore small values proved to be 
proper (1.5-2). The implemen ted techniques for outlier detection 
use an amplitude cri ter ion. Signal values that exceed the expec­
ted range of values are presumed to be outliers. One of the 
supported techniques combines an amplitude with a frequency cri­
terion, assuming tha t ou tliers are essentially high-frequent. 
Dependent on the chosen method also parameters like a cut-off 
frequency or the size of a data subset have influence on the 
performance of the detection. The detection methods note the 
pos1tion of outliers and transfer this information to the correc­
tion methods. For each desired signal a range of samples must be 
specified. The computations will take place only on these data 
ranges. 

The following detection methods are provided: 

LEVEL: 

(5.2.1) 

This method is recommended for process signals 
with no significant trends. It uses a straight­
forward amplitude cri terion . 'When the signal 
shows a significant trend i t might not function 
properly. The mean x and the standard deviation 
o (x) of the signal x (t) are computed over the 
selected data range. Outliers satisfy the follo-
wing test: 

x(t) -x 1 > S.o(x) 

with s the shaving strength. 
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TREND: 

(5.2.2) 

HEDIAN 

(5.2.3) 

BACK X 

(5.2.4) 

This method might :be used for signals contami-
nated with slow drifts. The signal x (t) is 
first filtered with a high-pass filter to eli-
minate the slow drifts from the signa!. Sul:>se­
quently the standard deviation of this filtered 
signa! is computed to define, together with the 
sha ving strength , an upper :bound on the accep-
ted signal amplitudes. 
For the detection of outliers the following 
test is performed on the filtered signa!: 

with index 'hp': high-pass filtered. 

This method starts the same as TREND . 
correction the standard deviation is 
to define an upper :bound for the 
criterion. 

After trend 
computed 

amplitude 

The original, unfiltered, signal is 
into contiguous subsets of samples. 
subset the median is compu ted . 
Outliers satisfy the following test: 

now divided 
From each 

1 x(t) - median(x) I > S.ohp(X). 

Unlike the average signal val ue of a data sul:>­
set the median val ue is rather insensi ti ve to 
the occurrence of ou tliers in the set . This 
method may also conveniently :be used for deter­
ministic signals like PRBNS . 

Th is method uses a coml:>ined amplitude and 
frequency cri terion. The method is developed l:>y 
T. Backx (see Backx /2B I). 
First the mean and varianee of the high pass 
filtered signals are computed (as with TREND). 
The detection starts with low-pass filtering of 
the unfiltered original data. 
Assuming that spikes are essentially high freq-
uent these can l:>e detected l:>y comparing the 
original signa! with the low-pass filtered 
signa!: 

I Xlp(t) - X(t) I > S.Ohp(X) 

with index 'lp': low-pass filtered. 

The high and low-pass filters used in the detection steps are 
2nd order symmetrie digi tal IIR (In fini te Impulse Response) 
Chel:>yshev filters, introducing no phase shift. These filters are 
designed according to the des i red cu t-off frequencies. The design 
is l:>ased on the analog 'normalized' low pass Chel:>yshev filter 
(see Jong /9 /). 
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The bilinear mapping method is used for transformation to a 
digital high or low-pass filter. For proper filtering of the 
first samples startup wi th past data samples is possible. If no 
data samples are preserved the first a vailable sample is 
repeatedly used. In application of these filters in the different 
detection methods the transition bandwidth has to be considered. 

The following correction methods are provided: 

MEAH Replaces the outliers with the signal mean, 
computed over the selected datarange, corrected 
for the signal val u es of the ou tliers. 

INTERPOL Replaces the outliers with the interpolated 
signal. 

MEDIAH Replaces the outHers with the subset median 
value. Only applicable when the detection method 
is also HEDIAH. 

Step 5: STATIC HOH-LIHEAR CORRECTION 

From the gaugements non-linear relations of for instanee in­
strumen ts may be discovered. If a linear model of the process has 
to be formed 1t is necessary to correct for the known non­
linear i ties. 
In this step a number of static non-linear filters may be de­
fined. Besides correction of a non-lineari ty also signal repair 
may be performed by specifying a data range for the filter. 
The filters have the following format: 

(5.2.5) y (t) = a 0 + a 1 . x ( t ) + a 2 . x 2 ( t ) + a 3 • x a 4 ( t ) 

With: x (t) 
y (t) 

the input signa! 
the corrected signa! . 

The user supplies the coefficiënts a1 and a data­
range for application and specifies which filter to use 
for each selected signa! . 

Step 6: TREND FILTERING & HOISE REDUCTIOH 

Slow drifts (trends) are found to be a severe problem in mea­
sured data from practical (industrial) processes. Several authors 
(Isermann /171 and Baur /25/) have done some research on proper 
trend filtering of the data. All the methods proposed have the 
disadvantage that parameters of a preproposed trend model have to 
be estima ted in parallel to the process parameters. High pass 
filtering of the data is a much simpler method for detrending 
data. If the speetral band of the trends is close to the speetral 
band of the process a difficulty exist in establishing of the 
proper trend filter to use. We do not want the filter to elimi­
nate process information from the data, but we also do not want 
to lea ve trends in the data. 
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A protocol, mak.ing use of the behaviour 
meter estimator on data with trends, 
mina tion of the proper trend filter. A 
col is gi ven in chapter 5.3. 

of a Least Squares para­
is developed for deter­
description of this proto-

This steps offers several filters for trend correction and 
correction of high frequencies representing noise. 
Using a high-pass filter (wi th cut-off frequency Wet> 
removes the signal trends caused by the drift. By using a low­
pass filter (w i th cu t-off frequency wc2>wc1> the 
noise level may be reduced. A band-pass filter can be used to 
perform these actions simultaneously. 
A band-stop filter may be used to extract a specific frequency­
range from the process signals. 

Digital FIR (Fini te Impulse Response) filters (see liter a ture 
/9/,/10/ and /11/) are used to approximate the desired frequency 
characteristic H(w): 

(5.2.6) H(foJ), {! for 
for 
for 

w < Wet 
Wc 1 ~ w ~ 
wc2 < w ~ 

with Wct•Wc2 : cut-off frequencies 
ws : the sample frequency 

For the approximation of this filter the frequency scale is 
divided into three sections : the pass band (H = 1), the transi­
tion band and the stop band (H = 0). 
The desired frequency response H(w) is expanded into a 
fourier series. A finite order unit sample response sequence 
h(k.)', representing a digital filter of the FIR type, is obtained 
by truncating the infini te fourier series and performing an 
inverse z-transform. The oscillations occurring in the frequency 
response due to the truncation can be reduced by application of 
a window function w(k.). The filter coefficients sequence as well 
as the window function is symmetrie around k.:O, 
The resulting response sequence h(k.) is found by multiplying 
h(k.)' wi th w(k.): 

(5.2.7) h(k.} : h(k.}'*W(k.) for k. : -H:H 

with M the filter order. 

Besides the cut-off frequencies also the width of the transition 
band and the type of window to be used (SQUARE, HAHHIHG, HAMHING 
or BLACKMAH) may be specified. 
The type of window influences the the maximum pass band and stop 
band ripple and the width of the transition band. 
Table 5.1. presents the window functions and some characteristi­
cal values of the FIR-filters designed with these Windows. 



DATA COHDITIOHIHG IH PROCESS IDEHTIFICATIOH Page 5. 7 

SQUARE 
HANNING 
HAMMING 
BLACKM.AN 

Maximum Transition 
Stop Band Bandwidth 
Ripple (Ws/M) 

-21 dB 0. 9 
-4-4- dB 3. 1 
-53 dB 3. 3 
-74- dB 5. 5 

Table ~ Characteristical features of the FIR-filters designed 
wi th the different window functions . For a gi ven fil­
ter order M a smaller stopband ripple is exchanged for 
a larger transition bandwidth. 

The data is filtered by convoluting the unfiltered data with the 
symmetrie impulse reponse of the filter. Ho phase-shift is 
introduced due to the symmetry of the impulse response of the 
filter. A number of filters may be defined and for each signal a 
filter may be selected. The original data is divided into a 
filtered signal and a signal that has been filtered out, which 
is stored in a separate dataset. For proper filtering at the 
boundar i es of the selected data range the buffer may be extended 
at the beginning and the end with samples from the raw dataset 
and to use them for starting the filter properly. The number of 
extra samples used dependends on the order of the filter. The 
correcti ve steps 2,4- and 5 are a lso applied to the addi tional 
data. When insufficient data is available the start and stop 
sample of the input dataset are repeatedly used. 

Step 7 : DAT A REDUCTIOH 

Using a high sampling frequency for the experiments leads to a 
large amount of data that may be conveniently used for the pre­
viously discussed correction steps. Also aliasing may be prohi­
bited if a high sampling frequency is used. To prevent unneces­
sary high order models and numerical problems the excess of data 
must be removed in the data reduction step. The data reduction 
factor redfac is supplied by the user. Two methods for data 
reduction are available: 

DECIMATION : the data is divided into contiguous groups of 

AVERAGE 

redfac samples. Of each group the first 
sample is selected . 

The data is divided into contiguous groups of 
redfac samples. The samples in each group 
are a veraged and re sult in one new sample . 
Consider the filtering effect of this epera-
tion. 

Using PRBNS input test signals the reduction factor is limited to 
the range [1,X) wi th X the minimum pulse length. 
If a PRBNS is used as input signal the maximum reduction factor 
x is used. In identification of a process with more different 
time constants it may be convenient to use reduction factors 
other than x. 
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Step 8: SCALIHG & OFFSET CORRECTION 

Offset values in the signals may cause biased results in the 
estimates. To increase accuracy in parameter estimation sealing 
may be performed on the process signals. 
After calculation of the signa! means and variances of the condi­
tioned data, the data may be transformed to: 

E =0 offset correction: y (t) =Y (t) -Y) and 
o = 1 sealing: y (t) = (Y (t) -Y )/Oy+Y. 

Hot all disturbances in the data can be tackled with FILTER. 
For instanee dynamic (and unknown statie) non-linearities in the 
process or measurement errors like quantisation noise. To solve 
these problems experiment parameters have to be adapted or in­
stallation of improved equipment should be considered. 

§ 5 . 3 ~ Protocol f2r Trend Filter Determination 

The disturbances signal w(t) may be wri tten as: 

( 5. 3. 1 ) 

with 

w1 ( t) 
W'2(t) 

W3(t) 

W4(t) 

stationary stochastic noise with zero mean, 
low frequency noise; slow signa! drifts 

(trends), 
outliers; spikes; signal distortions, 

missing data pieces, 
other disturbances like process non-linea­
rities that do not fit in the linear process 
OUtput X ( t ) . 

The bias in the Least Squares estimation of the process parame­
ters {A;Bl due to the trends w2(t) (see appendix 1), can be 
used to establish the proper specification of a trend filter. 
With a protocol described below the cut-off frequency Fe for a 
high-pass trend filter with a given transition bandwidth, can be 
determined. 

The protocol is based on the behaviour of process models 
estimated with an ordinary Least Squares method on the filtered 
process data. 
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First the measured process data is filtered with a number (n) of 
high-pass filters wi th cu t-off frequencies Fi=i•A f for 
i=[O,n) such that with Fn the data is certainly detrended. 
Then a model i: {A;1:ni is estimated for each filtered 
data sequence {u;y)Fi· 
With these models simulation is performed on a fully detrended 
data sequence e.g. {u;y}n, filtered with cut-off frequency 
Fn. 
By studying the simulated output residuals Ay(t) as 
function of the cut-off frequencies Fi of the high-pass filters 
used the proper trend filter can be determined: 

with the linear process output x(t) and the 
y(t) the output residuals ay(t) are computed 
the process description as mentioned in chapter 2: 

simula ted output 
as follows, using 

(5. 3. 2) S: y ( t) = x(t) + w(t) Wi th 

(5. 3. 3) x ( t) = (A-1. B) 11 • u(t) and 

(5. 3. 4) y ( t) = .A-1. ~.u (t) 

the simulated output residuals are: 

(5. 3. 5) Ay(t) = y ( t) - y ( t) = 

[ (A-1.B)*- .A-1.~ J.u(t) + w(t) 

As can 
output 

be seen from equation 5.3.5 two terms attribute to the 
error residual Ay(t), namely: 

- 1 . a term re sul ting from the bias in the estima ti on of the pro­
cess parameters (A;B) and 

-2. the residuals term w (t) of the process description S. 

The first term can be studied seperately by simulation 
(biased) models on a fully detrended data sequence. 
In these simulations the input vector u(t), the residuals 
w(t) and the "true" process model1 estima ti on 
(on the data without trends) do not change. 

The output error residuals 
(A;1:n1 simula ted on a fully 
{UiYlFn (filtered with cut-off 

Ayi(t) from model i: 
detrended data sequence 
frequency Fn) are: 

( 5. 3. 6) Ayi ( t) = YFn ( t) - yiFn ( t) = 

[A- 1. B*Fn - .A- 1· ~ 1Fi }uFn(t) + 

WFn(t) 

With 

vector 
(A *;B*l 

1: If the high-pass filter frequencies are taken too high 
the "true" parameters (A*;B*l may change. 



DATA COHDITIOHIHG IH PROCESS IDEHTIFICATIOH Page 5. 10 

Using this method the second term WnFCt) in the sim u la tions 
is constant. Only differences in the estimated model parameters 
ca u se a varia ti on in the output error residu als term 
A y i ( t ) 
The estimated parameters will be unbiased with respect to the 
trends in the process outputs if these trends are eliminated from 
the signals. As a result the simulated output residuals will 
remain constant. From a plot of the simulated output residuals of 
model (A;BJ1 as function of Fi on the data sequence 
(u;ylFn the frequency of the proper trend filter to be used 
Fe (Hz) can be determined. 

A protocol with all the aspects of importance for application of 
the scheme described above is gi ven in figure 5.2. 
The protocol starts with decimation of the process data and 
selection of an input-output relation. Essential in the protocol 
is the success of the LS parameter estimation, meaning that a LS 
estimation (A;Blo must have a relative simulation output 
error on the unfiltered sequence (u;yJFO of at least less 
than 100 :1.. Before filtering and successive parameter estimation 
can be performed adaption of the model order, time delay correc­
tion, decimation factor or input-output selection may be neces­
sary. 
Generally the model order (nA;nBJ to use has to be chosen high 
enough to prohibit side effects from this choice. The procedure 
is found to be not work.ing properly if the latter is not taken 
high enough! 
A simple rule is : take the order of the A and B polynomials 
(nA;nBl equal to the order as follows from an equation-error test 
(with the application ORDERTEST) and add a few orders. 

The protocol has been applied to the measured data of the feeder 
and the hydra ulic-thermic process. 
The process signals of the feeder, figure 5.1, are heavily cor­
rupted by trends. 

X'"'-• ·-· ...... ..... ..... ...... ..... 
••• 
••• • •••• ..... •••• •••• .. .... 

• ••• 

Figure ~ Heasured output signals in the second section of the 
feeder , FDSP _FM 1 and FDSP _FL 1 

The applica tion HODELTST is used to 
simulation output residuals : var(èly(t)l/var(y(t). 

calculate the 
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We start with raw measured process data sampled with sample time 
To : {Y.;YJ;To. 

- Slgnal repair 
- Filtering of outllers 
- Statte non-linearitles correcte~ 

.----I----. 

l 
t] - Visual inspeetion ~ta; tren~s? 

- Estlmate frequency range posslble tren~ 

l 
2] Select Input-output Relation •4--------------,1 

- Deelmate measure~ process ~ata 1 

.----I-__, 

3] - Off-set value correction 
U(t):U(t)-00 ; y(t):T(t)-T0 

- Time ~elay ~~ estimation a correctton 

I 
/tu;Yil"" I 

4] - Ho~el structure selectton nA;nB 

nA; nB high enough I 
- LS estlmatlon on ~ta range [nt;n2] 

I 

~ 
5] - Simulatlon wlth mo~el IA;tJO on [nt;n2] 

! 
< 

B!lt.1.1Ut10D 
tnlcceaa~ul? 

>---.0~------------------!~ 

Figure 5 . 2 . a A protocol for the determina ti on of the proper 
trend filter 1 phase 1: input-output selection 1 deci­
mation and model order determina ti on for LS estima­
tor. 
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< 
Est1mat1on 

successful? 
> 

Paae 5.12 

6] - Filter process sianals {u;yl with a high-pass filter 

with cut-off frequency Fi = i•Af (Hz) for iE [O;n) 
n chosen ( based on 1] ) such that the data sequence 

{u;ylFn is fully detrended (visually). 
Two possibilities: 

-1. FIR filter (with Af free, remind filter startup) or 
-2. FFT/RFT (With Af: kw1/(2T0 N) k=1,2,. ) . 

.----I_ 
(u; y) Fi 1€ [0; n] 

l 
7] - LS estimation on each filtered data sequence 

data range [n1;n2] with model order nA;nB 

.----I __ 
{!;AJ1 for 1=0 .. n 

l 
8) - Simulate with the model lA:~Ji for i=O . . n 

on the (fully detrended) filtered data sequence 

{u;yJFn : simulated output residual Ayi(t) 

r----I 
var(Ay1(t)J 
var(YFn(t)J 

9) - Plot the simulated output residuals as a fuction of Fi. 

The cut-off frequency Fe for the proper trend 

filter to apply to the data sequence tY:YJ;T0 

can be determined from this picture. 
(Remind the transition bandwidth of the filters used in 

this routine!) 

l 
~ 

Figure 5 . 2 . b A protocol for the determina tion of the proper 
trend filter, phase 2: filterina, model estimation 
and simulation. 
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After decimation of the feeder data with a factor 10 the protocol 
is applied to the temperatures FDSP _FM1 and FDSP _FL1 (MIHO esti­
mation). 
The model order used is nA=6;nB=6. All a vaila:ble samples (1100) 
are used. High pass filtering is performed with FIR filters using 
a HAMHING window function with minimum transition :bandwidth 
8.3E-4 Hz). For proper startup of the FIR filters 100 samples at 
the beginning and at the end are taken. 8 filters are used with 
cut-off frequencies Fi = i.Af with Af=2.0E-4 Hz and 
i=[0,7]. 
The :biasedness of the LS estima tor d ue to the trends in the 
measured data can :be o:bserved if we look at the estima ted models. 
In figure 5.3 the simulated impulse responses of the estimated 
models are gi ven. The tail of the impulse responses varies wi th 
the trend filter used up to a certain frequency. 

o.oa 

o.oo 

-0.02 

o.oa 

o.oo 

-0.02 

><FI..STFO 

~ 

":: ~ 
~ 

'1--
0 

><FM1TF4 
FM1TFS2 c 

\ ..",.-: 

20 

! 
I 
l 

l 
I 

! 

c ---
0 20 

VI'I..S1P'4 

-----

.. o 

I 
I 

1 

i 
' I 
I 

.. o 
RECORD_ 

I 

eo 

10 
+I"Mi1P'i0 

10 

Figure ~ Simulated impulse reponses for the feeder temperatures 
FDSP _FL 1 and FDSP _FM 1 with the estimated models (A;BJi 
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The result from the protocol is given in figure 5.4. 
The cut-off frequency of a proper tren i filter for the tempera­
ture FDSP _FL1 is found to be 4.0E-4 Hz for the FIR filter used. 
For the temperature FDSP _FH1 a cut-off frequency of 8.0E-4 Hz is 
found. Dependent on the variables used in an estimation the 
highest cu t-off frequency has to be selected. 
In successi ve trend filtering of the raw measured data using the 
result of the protocol the finite transition bandwidth of a 
filter has to be remembered. 

1.1 

1.7 

" g .. 1.8 

• • • • UI ..... 
.. 
0 .. 

1.6 .. • 
• :1 • • 1.1 
:1 
0 

1.1 

1.1 
0 a I ' tl • ' 

D 
nr~,;ror,J-(IIs)] ... 

• 
••• 

" 8 ••• .. 
- '·' • I.J • • ..... • .. 
I '·' 

'·' • 
I '·' g 7.1 

' ... ... 
0 1 I I ' tl • ' 

D nr~~,.J-CIIs)J 

E:;!.gyrf: ~ Result from the trend filter determina ti on protocol 
for the feeder temperatures FDSP_FL1 and FDSP_FH1. 
Af:2.0E-4 Hz. Transition bandwidth FIR (HAHHIHG) 
filters : 8.3E-4 Hz. 

If we study the trend filtered from the feeder signals, figure 
5.5 we observe two terms: a very low-frequency term originating 
possibly from the furnace and a second term with a period of 
about 24 hours. In the feeder temperature FDSP _FH1 this day-night 
rithm can be seen. 
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X""-& A-& 

• 

0 

-· 
0 

Figure 5.5 
•ooo •ooo •ooo •ooo &oooo 

Trends filtered from the feeder temperatures FDSP _FL1 
and FDSP _FM1 with a FIR filter with minimum transi­
tion l:>andwidth 8.3E-4- Hz and cut-off frequency S.OE-4-
Hz 

The protocol has also successfully been applied to other feeder 
temperatures. In application to simulation data, disturl:>ed on 
purpose wi th trends, the exact cut-off frequency (remember the 
finite transition l:>andwidth of the FIR filter) for filtering of 
the trends resulted. 

If we study the output signals, figure 5.6, from the second 
vessel ,T4- and H4-, in the thermal-hydraulical process we 
can see a "dip" in the middle of the signa Is. Th is migh t l:>e a 
trend signa!. In applica ti on of the protocol however no trends 
are discovered. The simulated output residuals on a fully "detre­
nded" data sequence stay almost constant as function of the 
filter cut-off frequency. Model estimations on the "trend" fil­
tered process data in fact generally had a worse simula tion 
l:>ehaviour. If we study the "trend" filtered inputs, Q and Gs, 
the sa me "dip" can l:>e seen in signa! Q. Th is means tha t the "dip" 
in the output signa Is can l:>e explained from a low frequency 
component in the input signals . 

.... 

.... 
-···· 
~-·4 ~.~------------~-~.~------------~ •• ~.~.------------~ --·- -:...&:#--~·- ...... ._. ... ,. ... -.... 
.... 
-···· 
-···· 
-· .... "'!:.:-----------~.~ •• ~---------..-•• --.~.--------...J ---

Figure 5. 6 .a Measured output signals at the second vessel of the 
thermal-hydraulical process 



DATA CONDITIOHING IN PROCESS IDEHTIFICATIOH Page 5. 16 

... ·-
-···· 
-···· 
-···· 
-···· 
-···· • • •• .. ... --

Figure 5. 6 .b "Trends" filtered from the inputs Q and Gs 
the hydra ulic -thermic process 

§ 5 . 4- Influence Q.f Jà..1s Conditioning sm Process 
Identification 

of 

In this paragraph some aspects of data conditioning on the raw 
measuremen t data from the feeder process are discussed. In analy­
sis of the feeder data first a thorough visual inspeetion is 
performed. Several disturbances in the inputs COOL_AIR and F2_GAS 
exist. If we look at the different signals from the feeder trends 
are apparent. These trends mainly originate from the oven where 
large disturbances in the energy input are visible, see figure 
5.7. 

Figure 
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2000 4000 
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6000 8000 

from the glas -oven ca using 
tempera tures 

trends in the 
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Apart from the the improved simulation result of a model on 
conditioned data the estimated model of the process dynamics is 
better. Due to the high energy content of the disturbances in the 
raw data a parameter estimator tries to incorporate these effects 
into the model. This can be seen clearly if we looi:<. at, figure 
5.8. Poles with very large time constants occur in the model if 
the trends in the data are not filtered. In figure 5.8 the im­
pulse responses of the estimation (wi th HARICOV), presents the 
spout temperature FDSP _F51. Estimation has been performed on the 
"raw" data and on the fully filtered data. On the "raw" data 
offset value correction and sample reduction with a factor 10 is 
performed. On the fully filtered data sequence the input signal 
disturbances are repaired and trend filtered with a FIR (Hamming 
window) filter of maximum size with cut-off frequency 8.0E-4 Hz 
and transition bandwidth 8.3E-4 Hz. The simulation output resi­
duals are calculated with HODELTST. 

-· 
0.010 

0.0011 

F1 _GAS 
0.000 

-o.OOII 

-o.OIO 
0 - - --

-o.-

-o.OIO 

-o.olll 

COOL _AIR 
-o.oao 

-o.-

-o.oao -· - - -
0.011 

0.011 

o.o. 
F2_GAS 

o.aa 

0.00 

-o.oa 
0 - - -

TDIE.. -· Figure 5 . 8 . a Estima ti on resul t of HARKOV (response length = 6 5 , 912 
samples) of FDSP _F51 on the "raw" data: reduction 
factor 1 o , offset val u es corrected . 
Sim. error H/S = 39.38X. on the data range [91,912]. 
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o.o. 

o.oe 

F 1_GAS o.o• 

o.oa 

0.00 

200 - -
TDIE_ -· 

-

COOL_AIR 

0 - - -
TDIE_ -· -

F2_GAS 

0 - - -.,__ -· 
Figure 5 . 8 .l:> Estima ti on re sult of MARKOV (response length = 6 5 , 912 

samples) of FDSP _F51 on the filtered data: distur-
bances repaired , trend fil tered : FIR filter , 
Hamming window , Fe= 8. OE -4 Hz and minimum trans! tion 
:band w id th , red uction factor 1 0 . 
Sim. error H/S = 1.43 X on [91,912]. 

Hot only the parameter estimation on the raw data is influenced 
l:>y the trends l:>u t also the accuracy (estima tion!) is worse. If we 
study the estimates of the parameter accuracy of the markov 
impulse response es ti ma tes from the input F2_GAS to the feeder 
temperature FDSP J"51 on the "raw" and the filtered data, figure 
5.9 clearly the parameter estimation accuracy is less for the 
"raw" data. 
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100 400 100 0 100 400 

1. "raw" data 2. filtered data 

Figure ~ Estimation result of HARX:OV (response length 65, 912 
samples ) from input F 2_GAS to FDSP Y 51 on the 
"raw" 1. and the filtered 2. data. 

Numerical conditioning of the estimation problem and the con­
verge of the estimate of the covariance matrix P influence the 
accuracy of the parameter estimation. 

It is found that the direct impulse response estimates with 
HARKOV on the filtered data suffer less from oscillations (with 
w = <a>s/2 (nyquist frequency)) in the parameters than 
the estimates on the "raw" data. Probably the better numerical 
conditioning of the parameter estimation on the filtered data is 
responsible for this. The results from the equation error order­
test are found to be influenced by disturbances in data. In using 
the recursi ve applica tion Guidorzi sometimes unstable models 
resulted after encountering an outlier in the data. 

100 
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§ 5 . 5 Conclusions 

Disturbances in measured process data have influence on the 
performance and result from identification methods. Since the 
parameter estimator tries to incorporate trends and outliers with 
high energy content in the model. 

Most disturbances in measured process data can be taken care of 
Wi th the applica tion FILTER. The usage of FILTER for the 
different operations is straightforward. Only the determination 
of the trend filter to use is a problem if the speetral band of 
the trends is close to the process band. A sharp filter has to be 
used to be certain that all trends are filtered, but as little as 
possible information of the process is removed from the 
measurement data. 
A protocol is developed to sol ve this problem. The least squares 
estima tor to u se in the protocol has to be successful. On the 
process data sequences studied the protocol is found to be wer­
king properly. 
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Chapter 6 . CONCLUSIONS 

This report discusses interacti ve modeHing of the dynamical 
behaviour of practical processes. Attention is focused on the 
experiment design and conditioning of the raw measured process 
data. A protocol has been developed which proves to be working 
properly for the process studied. 

Furthermore, conditioning the raw data proved to be of key 
importance for the success of the identification methods. For 
this purpose the PRIHAL package has been extended with a new 
application (FILTER) wl).ich offers the most important operations 
for data conditioning. 

A first study is performed wi th respect to the different aspects 
of experiment design in process 1dent1ficat1on. Especially expe­
riments performed in the pre-measurements phase are found to be 
inefficient. The amount of time spent in this phase however is 
large. It is suggested that the design of experiments deserves 
ad di tional a tten ti on in the PRIHAL project. 

The application of PRIHAL in identification of a practical pro­
cess proved to be powerful wi th respect to the interacti ve and 
on-line features of the package. Especially the on-line viSual 
monitoring of process signals & results of the analyses proves to 
be very useful in all the stages of an identification project. 
PRIHAL offers many tools for analysis of process data. This 
allows the user to search for the best possible method for a 
particular problem. It is therefore possible to genera te (a 
picture of) the obtainable results an a short time. A drawback is 
tha t in this approach an ofter enormous amoun t of data is 
generated and the user may loose the overvieuw of his actions. 
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APPENDIX 1 .Least Squares Parameter Estimation <IYH-LS l 

The process s that generates the data may be described by a 
determinstic (model) part and a disturbances part: 

(A 1. 1) S: y(t) : X(t) + W(t) with 

y(t) the measured output vector at time instant t, 
x (t) the linear system output vector and 
w (t) the output disturbances vector. 

The deterministic part can be described by a transfer function 
matrix 

(A1.2) X(t): G(q-1).u(t) with 

q- 1 is the back shift opera tor : q- 1 u ( t ) :u ( t- 1 ) 
u(t) the measured input vector at time instant t. 

The disturbances vector contains all the output signal disturban­
ces Which can not be described by the transfer function matrix 
G(q-1). It is assumed tha t these disturbances are not corre­
lated with the input signals. 
In practical process data the disturbances vector w(t) not only 
contains stationary stochastic noise with zero mean but all kinds 
of disturbances occur (see chapter 5.3). 

The LS estimator used by the application IVH-LS estimates the 
parameters of the model using a Matrix Fraction Description (HFD) 
to describe the relation between the inputs and the outputs. 
(Söderström /15/): 

(A 1 . 4 ) H : A ( q - 1 , 6 ) . y ( t ) : B ( q- 1 , 6 ) . u ( t ) + v ( t , 6 ) w i th 

6 a n6 -dimensional vector of unknown parameters 
of the elements from A(q-1 ,6) and B(q-1 ,6). 

v (t ,6): the model (equation) error at time instant t. 

A (q-1 ,6) :I+q-1A ( 1) (6 )+ ... +q-nAA (nA) c6 ) 

Autoregressive part of the system model 
nA : order of the polynomial A ( q- 1 , 6 ) and 

B < q - 1 , 6 > = B < o > < 6 ) +q - 1 B < 1 > f < 6 > + . +q-nBB < nB ) < 6 > 

Hoving average part of the system model 
nB : order of the polynomial B ( q- 1 , 6 ) 

compounded 
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With the 
functions 
equation: 

(A1.5) 

matrix coefficiënts (Ai (9 );Bi (9 )J 
of 9 the model can also be written as 

H: y(t) : 4>T(t).9 + V(tl9) 

4> (t) a data matrix containing the 
and input samples . 

a 

Page 2 

linear 
regression 

With 

delayed output 

Assumption : there exists an unique 
that 

vector 9* such 

(A1.6) 

(A 1. 7) 

(A1.8) 

A < q - 1 I 9* ) - 1 . B < q - 1 I 9* > = a < q - 1 > . 

Thus the process can be rewritten as: 

H : y < t > = 4> T ct > • 9* + v < t I 9* > w i th 

v(t) = A(q-119*)w(t) 

The structure of the parameter vector 9 and the data matrix 
4>(t) used in the applicat1on is described in Berben /12/. 

The model parameters are est1mated using a quadratic criterion 
function on the equation error v(tl9) with respect to the para­
meter vector 9: 

(AL 9) 

with H observations for u (t) and y (t) available: 

H 
V(9) = (1/H). E vT(t 1 9)v(t~e> 

t=1 

With respect to e the minimizing element is taken as the est1mate 
ê which follows from c3V{9)/c39 = o. It is gi ven byl using 
equa t1on A1.6: 

(AL 10) 

ê:e* + [1/H. ~ 4>(t)4>T(t)]-~ [1/H. ~ 4>(t)v(t)] 
t=1 t=1 

bias 

Due to these signal disturbances the parameter est1mat1on will be 
biased if the equation error v(t) (equal to A*w(t)) is corre­
lated to the measured output signal y(t). 
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APPENDIX 2 . ~ Application Filter; 
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