EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Practical aspects of process identification with PRIMAL : a tool for process identification

Janssen, P.A.

Award date:
1987

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain


https://research.tue.nl/en/studentTheses/110ed8a1-4e65-4b2b-9478-a321270042dc

VAKGROEP SYSTEEM- NR-1470P (1987-10-22) P.A. Janssen

EN REGELTECHNIEK

PRACTICAL ASPECTS OF PROCESS
IDENTIFICATION WITH PRIMAL;
A TOOL FOR PROCESS IDENTIFICATION

P.A. Janssen

AFSTUDEERVERSLAG

Begeleider: Ir. R.J.P. van der Linden
Afstudeerhoogleraar: Prof.ir. 0. Rademaker



SUMMARY

This rapport treats practical aspects of process identification
with PRIMAL; a tool for mathematical model building.

Process identification is an iterative procedure in which Know-
ledge about the dynamic behaviour of the process 1is gathered
by means of experiments, signal analysis, estimation and
validation.

In an identification project the prepatory - pre-analysis -

phase plays a very important brole. Different aspects of the
analysis and especially the conditioning of raw measured process
data have been given attention in this work.
As a ‘partial’ result a general signal conditioning application,
named FILTER, 1s added to the PRIMAL pacKkage. A protocol has been
written to solve some of the questions occurring in the pre-
analysis of a practical process with PRIMAL.

It is concluded that proper conditioning of ‘raw’ process data
is one of the most important steps in process identification. If
this step is not performed properly, no matter sophisticated the
parameter estimation method used might be, an identification
method will generally not function adequatly.

¥ . PRIMAL; Package for Real-Time Interactive Modelling,
Analyses and Learning.
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Chapter t. INTRODUCTION
§ 1.1 Preliminaries

This report is the result of my worK at the System & Control
group of the Physics Department at the University of Technology
in Eindhoven. This worK has Dbeen performed to obtain a Master of
Science degree in Physical Engineering.

One of the main research items in the group is the Methodology
of EXperimental Modelling. My worK 1s carried out within this
context.

For automatic aquisation and analysis of experimental data a tool
i1s needed which supports activities in this field. The centre of
attention therefore 1lies in the development and application of
the PRIMAL package (Package for Real-time Interactive Modelling,
Analyses and Learning). PRIMAL supports experimentating, data
aquisition, signal processing, signal analysis, system identifi-
cation, modelling and controller design. A more detailed descrip-
tion of the special features of PRIMAL 1is given in chapter 1.3.
Two major aspects in process 1identification, experiment design
{chapter 4) and data conditioning (chapter 5) have been studied.
The conditioning of process data has been given most attention.
With respect to the design of experiments for identification only
a first study has Dbeen performed.

In this report I have tried to describe my experiences in the
analysis of (measured) process data and model building 1in
the identification of several practical processes.

Throughout this report these experiences are formulated in a
‘rule of thumdb’ manner or by means of a protocol. The reader
should Dbe aware that -strictly speaking- these rules are only
valid for the studied data segquences. Nevertheless I hope that
these experiences may e of use for future identification pro-

Jects.

§ 1.2 Process Diagnostics:
the Purpose of Mathematical Model Bulilding

The problems occurring in System & Control Engineering may be
divided into 4 main categories:

-1 Diagnostics §:estimation of one or more specific process
Monitoring coefficients which can not be measured di-
rectly.
-2 Prediction: prediction of a process output signal based
on past output and past and present input
signals.

¥(t+1;0) = Mp(Ut,Yhe)
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-3 Simylation: modelling of the dynamic behaviour of a pro-

cess to explain the output of -the process
based on the past and present input sig-
nals.

Y(t+1;0) = Mg (U, PYe)
= Mg(UYe’)

-4 Control: control system design to achieve better
dynamical behaviour, e.g. minimization of
the influence of disturbances in process
variables and changes in process dynamics.

For all these problem areas a model of the dynamical behaviour of
the process under study 1is necessary.

The model is an abstract representation of a part, or certain
aspects of interest, of a complex real-world process. Such a
system can be thought of as being composed of an observable and
unobservable part and a controllable and uncontrollable part.
With a model a better understanding of the process can be ob-
tained. Also a model permits us to manipulate the real process
for reaching certain goals. It is clear that an important aspect
of modelling is its intended use. The construction , the form and
the complexity of a model should mainly be determined by those
aspects of the "reality" or the studied object which are believed
relevant for the intended use of the model. This implies of
course that the validity and usefulness of a model 1is restricted.
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§ 1.3 The PRIMAL Project

In literature much attention is paid to the theoretical aspects
of 1identification methods of multivariable processes and design
of (adaptive) controllers. In practice however these methods are
rarely used. Reliability, robustness and usefulness of the
results of these methods have had too little attention in theory.

In practice the path to results is seldomly straight. It is a
matter of trial, learning and re-trial. This interactive learning
Process has been put central in the design of the package
PRIMAL, which implies an interactive structure in which the
experimenter has a free choice on any moment Dbetween all the
facilities of the package (see Renes /22/,/26/).

PRIMAL 1is a tool for mathematical model building meant to cClose
the gap between theory and practice in the field of model buil-
ding and process identification.

BRIMAL has ihe following interesting features:

- an interactive structure. The train of thought of the expe -
rimenter determines the path followed in identification.

- PRIMAL contains a number of so-called application moudules for
all the different stages in experimentation and model buil-
ding.

Applications are available for experimentation, real-time ob-
servation of the ‘raw’ measured process data, correlation and
frequency analysis, data conditioning, parameter estimation for
parametric and non-parametric models, model validation and
model simulation. Also XKalman filtering, extended Kalman fil-

tering and controller design will be available in near future.

- New applications can be added easily to the pacKkage.

- Applications operate in parallel and independent from one ano-
ther. Intermediate -temporarily- results of an application
are available for other applications and inspection by the

experimenter, see figure 1.t.

- A comfortable powerful graphical application is available for
visual monitoring of high quantities of data and application
results.

- With PRIMAL all Kinds of testsignals can be generated for
superposition on process inputs to enhance the information in a
requested frequency range. With this interactive experimenta-

tion can be performed easily.
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- Experimentation and processing of the, sofar, gathered data can
be performed simultaneously.

-~ A logbooK 1is being Kept of experiment conditions, activities of
the experimenter and messages from the package. With this
logbook all actions that have been undertakKen by the experimen-
ter are tractable.

- PRIMAL has been written in a proper standardized programming

language (FORTRANT7). Together with a special software
structure and the usage ¢0f a number of special written libra-
ries implementation of PRIMAL on different hardware structures

in different industrial surroundings is rather easy.

Figure 1.1 Structure of the PRIMAL pacKage

Before commercial industrial application of PRIMAL, the package
has to be tested and evaluated in a number of identification
applications to real processes under industrial circumstances. In
this workK PRIMAL has heen used as a tool for identification of a
laboratory process and an industrial pilot process (see chapter
3). Especially the practical aspects of process identification
and the usage of PRIMAL in this have been given attention.
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Chapter 2. PRACTICAL ASPECTS OF PROCESS IDENTIFICATION
§ 2.1 Introduction

Mathematical models of the dynamic behaviour of a process can
be derived in two ways:

-1. One possibility is to derive a theoretical model from basic
physical laws and construction data. This analytical model-
ling, of a complex real-world process, is often very dif-
ficult, Important process coefficients, often varying with
time and place, are very hard to determine.

-2. With experimental analysis ~identification- the (noisy)
signals (=time sequences) of interest of an existing Pro-
cess are measured. Using an estimation procedure a model
may be obtained describing the input-output behaviour of
the process. The driving input signals can be artificial -
specially designed- test signals.

§ 2.2 A Methodology In Preocess ldentification
Information sources for the mathematical modelling Process

Modelling is an ongoing sequence of activities only limited Dby

practical constraints 1like <¢ost and time. To achieve a
satisfactory a-posteriori result, information 1is ‘tapped’ from
the process under study from different sources. Three major

sources of information feeding the model building process can D>de
distinguished, see figure 2..

EXPERIMENTAL
DATA

A PRIORI T MATHEMATICAL |
KNOWLEDGE | MODELLING

GOALS

Elgure 2.1 Information sources for mathematical modelling
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-1, Goals
The modelling is guided by the goals and purposes of the
identification project.

-2. A priori process Knowledge
Knowledge available about the dynamic properties of the
process are used in further steps like the design of
experiments and the analysis of the process.

-3. Experimenta]l data
Information about the process may be gathered throuzh measu-
rements of the process signals.

In identification projects a-priori Knowledge is important, but
the main information source is data obtained from experiments on
the process. Advanced techniques are necessary to define experi-
ments and to gather and analyse the data because of the sensivity

of the result of the analysis with respect to the information
content of the measurement data. The goal of the modelling plays

an important role during each stage. At any question to be ans-
wered during an identification project the intended use of the a-
posteriori model has to be Kept in mind,

Characterization of ihe identification problem

An useful characterization of the identification problem has
been given Dby Sdéderstrom /i15/. The following four notions charac-
terize the identification problem.

~-1. The experimental condition X referring to the manner in which
the signals are determined. It describes how the ldentifica-

tion experiment is carried out.

-2. The model structure M referring to the mathematical
representation of a process. A restricted modelset of candi-

date models is selected. In this stage a substantial amount
of a-priori Knowledge or a-priori guesses with respect to the

process is introduced. The set of mathematical models used
for identification within PRIMAL can be described with the
following list of adjectives:

- dynamic

- causal

- time-invariant

- discrete-time

~ linear dynamics

- finite order

- stochastic

- lumped parameters

- SISO (single input single output) or
MIMO (multiple input multiple output)
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The model set is chosen by selection of a representation form
together with a set of parameter vectors. A model structure then
is a set of models (or in an isomorphic way) a set of parameter
vectors ({6]. Together with the concept of generalized models,
Eykhoff /13/, 2 model error form can be chosen for each represen-
tation, that 1is linear in the parameters.

Not only the relation between the dependent (output) and indepen-
dent (input) variables 1is 1linear Dbut also the relation between
the dependent variables and the parameters in the parametrization
of the chosen model set. Evaluation of a performance criterion -
based on such a definition of model error- with respect to the
bpParameters is simple.

-3. The process refers to a mathematical description of the
process to Dbe identified. Such a description 1s an
idealization. It describes the mechanism of the process
that generates the data. To define and apply identification
methods there is no need to assume a certain system descrip-
tion. It is, however, useful for analysis of the results.

We assume, see Soéderstrém /i5/, that the system S that gene-
rates the data can Dbe described by a deterministic transfer
function and an output disturbance signal. The disturbances are
described by means of an additive output noise (superposition
Principle for linear systems).

The system S is linear, finite order, asymptotically stable and
stochastic. The output can be written as:

S: y(t)
x(t)

X(t) + wW(t)
G(q~1)u(t) with

y(t) : measured outputs at time instant "t",
X(t) : undisturbed outputs,
w(t) : output disturbances,
u(t) : inputs,
g-! : the backward shift operator
q tu(t) = u(t-1),
G(g~!) : the transfer function matrix.

In practice not only stationary stochastic noise with zero mean
enters the system but also disturbances like:

- outliers

- slow "drifts" (trends)

- non-additive noise components like quantisation noise
- static and dynamic non-linearities

- other measurement errors

These disturbances have a large influence on the performance of
the identification methods. They have to be taken care of before
application of identification methods to the measured process

data.
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-4, The criterion J referring to the estimation method used to
select in the predefined modelset the element that fits best
the available data.

The parameter estimates at time instant N for given X,M,8,J
are denoted by & (N;X,M,S,J).

A global description of the model structure, estimation method
and criterion of the parameter estimation applications in PRIMAL
is given in paragraph 2.3.

4 global scheme ln identification

The construction of a model in identification 1is an iterative
learning process, Gained Knowledge of the process dynamics is
used to adapt one or more intermediate steps in the identifica-
tion scheme.

Generally 3 main phases ¢an be distinguished in the 1identifica-
tion procedure:

-1. preparation / pre-analysis,
-2. estimation,
-3. validation.

In the pre-analysis phase the pre-requisites for the estimation
phase are organized.

In the estimation phase a modelset and a suitable parametrization
have to be chosen. Then, if a parametric model structure is
selected, the structural parameters 1like model order, or structural
invariants, and a possible time delay of the model have to be
determined, An estimation method and a c¢riterion have to be
selected and finally the parameters are estimated.

In the model validation phase it has to be determined whether an
estimated model should be accepted or not.

A scheme of the identification procedure with the mentioned
phases in mutual relation is given in figure 2.2.
It is my experience is that 4 main loops exist.
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Figure 2.2 Identification procedure
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The worK has focussed on the pre-analysis phase. This phase takes
generally a large amount of time in the total project. Some
‘tools’ to answer the questions occurring in this phase might
therefore be very useful. Most of the questions however can only
be answered in an *ad hoc¢’ manner. I have tried to formulate some
‘rules of thumb’ and a protocol to solve some of these questions.
The reader should remember that the rules presented throughout
this report are based on my experiences on the studied processes.
Rules formulated by others, Isermann /i/ and EyKhoff /13/, are
also mentioned.

The elements of the scheme presented will be discussed detailed
now. It i1s partly based on my experiences in identification of a
laboratory bprocess and participation of the System & Control
Group with PRIMAL 1in an 1identification project concerning a
glass-feeder (see chapter 3). Although the various sub-problems
are discussed seperately many interrelations exist.

-1. Problem definition

The project starts with a detailed description of the
goals and purposes of the project:

- Intended use of the model to build

- limited use, e.g. dynamical behaviour around an pre-
described operating point or a more generally applicable
model . (These aspects determine the need for information
in the measured data and the required accuracy of the
model to be developed).

- Investigate possible problems and bottlenecks

-2. Preliminary process lnvestigatlop

At the eginning of the project available existing Knowledge
of the process has to be gathered.

- Investigate technical properties ( dynamics ; non-
linearities ) and possible constraints of the actuators
and the sensors

- Select the process inputs and outputs of interest. The
inputs chosen must be able to vary the outputs over the

range of interest.
- Determine possible dynamic ranges and accuracy demands for

the signals to measure.

In practice it is advisable to measure as much variables as
possible . This enables facilitates tracking down the
possible reasons for signal disturbances and enlarges the

available amount of information on the process and its
environment.
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- Normal operating points and operating conditions have to

be Known.
- gather (1f possible) some information on the already mea-
sured (logged ) signals of the process, aspects like na-

tural signal variances and bandwidths of the spectra of
the process signals are of interest.
Characteristics of the disturbances that enter the process
S/N ratio of the the process signals.

~- Investigate the stability of the process.

- The existence of operative control loops has to be Known.

-3. Configuration & Installation Egquipment

In this step the necessary hardware and software has to be
installed:
- Additional sensors, transformers and actuators must Dbe

mounted on the process (if admitted) and gauged.

- Investigate instrument linearity.

- Equipment for signal generation, data storage , on-line
analog signal conditioning , for instance scaling and
anti-aliasing filters, have to be placed.

- The software for measurement and excitation of the process
inputs has to be configured.

-4. Detalled investigation of elementary process dynamics

In this step information on the dynamical behaviour of the
process must be gathered.

To design appropriate experiments! for process identifi-
cation, information is needed on the following process fea-
tures:
- Causal relations between the measured process signals.
- Sensivities (steady state gains K for each interesting
input-output relation in combination with
- A range of allowed variations for the input test
signals in the experiments.
- An estimation of the S/N ratio for the various process
signals measured in the experiments.
The S/N ratio’s are very important with respect to the
performance of the different parameter estimators. In
practice this ratio is often determined by low fre-
quency noise ("trends" ) (see chapter 5.3).

L Application of test signals, to enhance the information
content of the input and output signals, 1s not always allowed at
industrial processes. The experimenter 1s restricted to the
natural signals in normal steady state operating conditions.
Often these signals do not contain sufficient information for
determination of an appropriate model of the dynamical behaviour
of the process. In the next steps we assume that application of
test signals on the process inputs is allowed.
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- Elementary dynamical process properties of each input-
output relation of interest, liKe:

- dominant time constants T of the first order
process approximations,

- Possible time delays Tq.,

- static and dynamic linearity / non-linearity
of process and instrumentation, for instance
dependency of X (or other process properties) on
the amplitude A of a test signal superimposed on
a process input: K = f£(A) = constant ? or
the occurrence of hysteresis in one or more
process signals or
possible saturation of the measured process sig-
nals. :

- Time-invariant/variant process behaviour like
aging, for instance pollution or drifting of the
process.

- An estimate of the order of the different (sub-)
processes.

If not enough information on the elementary bprocess dynamics
1s available, some premeasurements must be performed.
A description of the *‘tools’ used for determination of some
properties of the elementary dynamics of the studied processes is
given in chapter 4. This phase is in practice also very useful
for testing the equipment, especially in an -often rather hos-
tile- 1industrial surrounding.

-5. Experiment design, Data collectlon

Besides the already mentioned premeasurements phase expe-
riments have to be performed for process identification and
validation of the estimated models. It is possible to in-
crease the information content in the measured process sig-
nals with specially constructed input signals.

Information 1s needed on the following experiment para-
meters:

- The frequency band of the test signal.

- The sampling rate Tg.

- Length (duration) N of the experiment.

- Type of the test signal.

- Amplitude A of the test signal, such that the information
content of the input and output signals is as great as
possible. The design of an optimall experiment however
is only possible if the process and its disturbances are
Known a priori.

In practical ‘explorative’ identification projects this is
hardly the case.

A minimum requirement for the input test signal is that the
dynamics of the identifiable part of the process have to be
*persistently ecxited" during the measurement period long
enough 1o permit the parameter estimation algorithm to con-

verge.
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A further. description of the practical aspects of experiment
design for process identification is given in chapter 4.

-6. Inspection of measured process data. signal analysis

- In this step the measured raw process data has to Dbe

inspected carefully for disturbances in the signals and
other possible measurement errors.

- With spectral analysis a first investigation of the dyna-
mical behaviour of the process is possible. It may also be
used to see 1if excitation of the process has been suffi-
cient.

- To study the various causal relations and to investigate
the possible occurence of time delays in the dJdifferent

dynamical relations correlation analsis may be applied to
the process data.

If the excitation of the process has not been sufficient and

thus if the process data is not rich enough in information a
re-design of the experiment is necessary.

-7. Data conditioning

Before application of system identification methods the

process data has to be corrected for the discovered signal
disturbances.

Data from practical processes is generally heavily contami-
nated with all Kinds of disturbances like outliers, slow

signal drifts "trends" and measurement noise,

They have large influence on the results of process

identification. A description of the different aspects of
data conditioning 1in process identification is given 1in
chapter 5.

-8. Process Identification

The modelling procedure itself is quite complex.

- Select a certain set of candidate models.

- A criterion for estimation must be determined.

- Estimate the parameters, t0o determine the ‘best’ parame-
ters of the model.

These choises must be controlled by the intended use of the

model. Also aspects like recursive or iterative, on-line

or off-line application must be considered.

{1 : In terms of minimization of certain model errors with
respect to noise, input and output signal constraints and

measurement time.
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By selecting one of parameter estimation applications in
PRIMAL all aspects named are chosen. The only choise left
concerns with the structural invariants ( order; time delay)

of the model.

Each estimator has its own special properties concerning
with

- (asymptotical) (un)biasedness,

- convergence and,

- efficiency, i.e. the variance of the result compared
with other methods and CPU time used by a method.
Especially the latter is important in interactive use
of a method by the experimenter.

In selection of the listed aspects in identification I have
followed a certain path. A description of this path together
with some interesting aspects is given now.

-1 . Impulse response estimation (MARKOV) of the process.
Although this estimation generally takes a large amount of
time and sometimes numerical problems1 occur 1in the
parameter estimates,the estimate is rather robust for
the other important aspects in the procedure like experiment
design (see chapter 4).

Due to the large model set much freedom exists in fitting
the process in the set model set,

The resulting model is easy to understand. Special
process properties like a time delay or an inverse response

are easily determined from the resulting impulse responses.
The model however is generally of unnecessarily high order.

-2. Structural test. With the information from a structural test
(ORDERTES) a sensible choice of the structural parameters
in a lower order model.

-3. A more compact model might be constructed in two different
ways:

1) One way to construct a model with a small number of para-
meters 1is to apply a realization method (HANKEL) to the
estimated impulse responses.

2) Another way 1s successive application of the estimators
GUIDORZI or IVM. GUIDORZI however 1s found to be sensitive
to outliers in the process data. The algorithm may not
converge within the length of the available dataset. The
estimated model is biased if the Pprocess output signals are
corrupted with ‘coloured’ noise.

Therefore IVM has been used which offers more facilities to
handle additive output noise.

f . sometimes a complex pPpole, with the nyquist £frequency
(= fg/2 with fg the sampling frequency) as eigen
frequency, is estimated. This results in an oscillation on the

parameter estimates (some examples of this effect can be found in
chapter 4 and 5).
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Generally a number of parametric estimates have to De
prerformed with varying structural parameters for the system
or noise model to be estimated before an appropriatel
result is obtained.

Which way to follow depends on the intended use of the
model. If the purpose is simulation the impulse response
method MARKOV, using an output error criterion in
estimation, should be chosen. If one step ahead prediction
1s performed GUIDORZI or IVM-LS could be chosen. The latter
uses an equation error criterion in the parameter estima-
tion. For the other estimators available in the application
IVM, due to the different criteria available for selection

of the ‘best’ model in the various steps, this choice is
much more complicated. See Berben /i2/.

-9. Hodel verificatjon

In this step the model obtained sofar is confronted with
the real process behaviour, taken into account the intended
use ¢of the model.

The a priori assumptions used in the identification as well
as the input-output bebhaviour of the model compared with the

real process are checked, preferably on a different set of
data (so-called cross-validation).
ASs with process identification, validation is not a

straight-forward procedure.

PRIMAL offers several facilities for verification of
an estimated model. Aspects of interest are

-1. Is the meodel estimation unbiased?
In case of an estimator with an equation error criterion: is

the equation noise a ‘white’ noise signal

F(T)yy = 0 for |T| #£o

-2. How does the model behave compared with real PIrocgess
ngnangnn?
By comparing the measured outgut y(t) and the estimated
(predicted or simulated) output ¥ (t) the output residuals
w(t) = y(t) - ¥(t) can be studied.
The application MODELTST in PRIMAL reviews a model Dby
looking at the simulation behaviour of the model. The
criterion used is a simulation error output i (i=1...q)

ne

L (wi(t)-wy)@

t:=n1

na2
L (yj(t)-yj)e
t=nt
with [ni;n2] an interval in the data sequence.

1 . this will be determined by the validation principle used
controlled by the intended use of the model.
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The simulation performance of different models may be
compared.

In practice this appears to be a rather fast and powerful
way to study the differences between the estimated models.

-3. Does the process fit in the chosen set of candidate
models?

Are the output residuals W('t) uncorrelated with the
input signals u(t)

$(T)yw = O for all T?

-4. Are the premises valid?
Is the equation error uncorrelated with the input signal(s)
u(t)

$(T)yy = O for all 17

And finally for some modelling purposes the accuracy of the
estimated parameters is of importance. ,

-10. Model use. consistency check.

The final, most important, validation step concerns the
use of the derived model. Also the consistency of the model
has to be verified by comparing the estimated model
with a model estimated on another data set and comparing the
model with models estimated with other methods.

If the goals of intended use are not satisfied the identifi-
cation procedure from experiment design up to validation
may be repeated using the Knowledge obtained sofar .

As will be clear from the protocoi presented, identification of
real processes recquires an extensive pre-analysis phase.
Although this phase takes substantial amount of time of the total
project, little literature 1is available treating aspects 1iKke
experiment design in the pre-measurement phase and data conditio-
ning for identification.
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§ 2.3 Parameter Estimation in PRIMAL

In PRIMAL several different estimation methods are available.
The number of model parameters needed may be determined by per-
forming an order- or structure test first.

An overview of the available identification methods in PRIMAL 1is
given in table 2.4.

Application Model structurel Description
EMM ARMAX, SISO Extended Matrix Method
RPE ARMAX, SISO Recursive Prediction Error
Method
ORDERTEST MIMO Prediction Error Ordertest
GUIDORZI State Space, MIMO Method of Guidorzi
IVM MFD, MIMO (Approximately) Optimal
Instrumental Vvariable
Method
TRANSFER Transfer Function, Direct Estimation of the
MIMOZ Transfer function
MARKOV Impulse Response, Estimation of Markov
MIMO parameters
HANKEL State Space, MIMO Hankel Realization method

Table 2.1 Process identification methods in PRIMAL

1 . ARMAX Auto Regressive Moving Average, with exogeneous
input
MFD + Matrix Fraction Description

2 . Not truly a MIMO estimation method. All the SISO
sub-transfer functions are estimated independently from

one another.

Not all the identification methods available in PRIMAL have
been intensively used by me. The processes studied where both
multivariable in input and output. So the SISO methods have
hardly been used. The MIMO method TRANSFER has not been used
because of its sensitivity to the choice of the parameters con-
cerning with the specification of the "frames" to be used. A
frame is a part of the time sequence of input and output samples
measured (see van Dijk /21/).

A characterisation of the methods used will follow now. Only some
interesting features are listed.
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ORDERTEST

GUIDORZI

MARKOV

Range order test of Guidorzi.

The one step ahead prediction error of a linear
MIMO model as a function of its structural inva-
riants is estimated.

model : X(t+1) = AX(t) + Bu(t)
y(t) = Cx(t) + Du(t) with

u(t) : input vector at time t (dimension p)
y(t) : output vector at time t (dimension q)
X(t) : state vector at time t (dimension n)

A ¢ System matrix (dimension n x n)
B : Input matrix (dimension n x p)
C ¢ output matrix (dimension @ X n)
D ¢ input-output matrix (dimension q X p)

method : The model is transformed to an observable
canonical form in which the system matrix has a
special block structure determined completely by
the structural invariants.

The application estimates directly from the input
output data the one step ahead prediction error of

a model as a function of its structural inva-
riants. :

MIMO State Space Model Estimation

model : State Space model (A,B,C,D) in output
companion form with given structural invariants.

method : Uses a recursive least squares (equation
error criterion) estimator to estimate the parame-
ters of an input output model equivalent to the
state space model (see Renes /22/).

Direct Impulse Response Estimation for MIMO
systems. A matrix results containing a MA model of
the process.

model : yY(t) = M(O)u(t)+M(t)u(t-1)+ ., +M(nj)u(t-n)

: B(gq-i)u(t) with
M + MarKov parameters
B a matrix polynomial in the backward shift

operator of degree nb.

method : mimimization of the one step ahead pre-
diction error € = y(t) - ¥(t) with a recursive
least squares method.

¥ (t) is the predicted output at time instant

"t  using the estimated B(gq~}) and input
signals u(t),u(t-1),.(output error criterion).
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IVM Instrumental Variable Method for estimation of
pParameters of a linear MIMO system.
{See Berben /12/.)

model : A(q~l)y(t) = B(a~liu(t) + v(t)

v(t) = (D(a Yy~ l/c(-Lne(t).

with
v(t) : equation noise
e(t) : vector with estimation residuals, it will

be approximately a white noise signal.
A,B,C,D are polynomials in the bacKkward shift
operator q-1.

method : The MultiStep-algorithm of Soéderstrom
& Stoica:

Step 1: A Least Squares Method minimises a least-
squares error criterion on the eqyation
error v(t) (LS-IVM) followed by a
BootStrap Instrumental vVariable Method
(IVM-BT). An iterative IVM that gives
unbiased results. This method does not
involve noise model estimation.

Step 2: Pseudo Linear Regression (PLR) Method for
the noise model.

Step 3: OPTimal Instrumental variable Method
(OPT-IVM). An iterative IVM that gives
unbiased results with an optimal accuracy.
This method requires data filtering with
the inverse noise model. (Step 2).

Step 4: Execute steps 2 and 3 repeatedly.

HANKEL : HankKel Realization method, derives a low dimen-
sional state space model from the estimated im-
pulse response - markov parameters { Mgl -
of a process. (A measured impulse response might

also be used.)
mode]l : State Space model (A,B,C,D).
method: First a Hankel matrix is composed of the

estimated markov parameters. Then a singular value
decomposition 0of the Hankel matrix is computed.

For a K dimensional realization the approximate
Hankel matrix Hg is determined by the K-dimen-
sional least squares approximation of the Hankel
matrix. .

Several different realization methods are suppor-
ted by the application.

The state space matrices A,B,C and D can be com -
puted directly from this approximate Hankel
matrix.
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§ 2.5 Remarks

For succesful application of system identification to practical

industrial processes much attention has to be given to the pre-
analysis phase in an identification procedure.
Especially the design of experiments ,in the premeasurement
phase, and the conditioning of data before application of process
identification methods are of importance. The influence of
disturbances in data of practical processes on the performance
and behaviour of the different system identification methods is
found to Dbe large. Proper data conditioning therefore is absolu-
tely necessary (see chapter B5).

The development of an application for PRIMAL for conditioning of
raw measured process signals however has been given most atten-
tion. Also some research has been done on the proper choices to
be made for the different operations in data conditioning and the
effects of data conditioning on the behaviour and performance of
a number of system 1dentification methods.

Some research has been done in this workK on the different aspects
of experiment design for process identification. The behaviour
and performance of a number of system identification methods has
been studied with respect to one of the parameters in the design
of experiments: the frequency range to enhance by an input test
signal. This parameter determines, together with the other para-
meters in experiment design, the information content of the
measured process signals.
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Chapter 3. THE PROCESSES
§ 3.1 Introduction

During my work at the System & Control Group I have studied two
practical processes.

I started with a thermal-hydraulic laboratory process to study
the different aspects in process identification including confi-
guration and installation of equipment, gauging of the instru-
ments, pre-analysis, estimation and validation. The study inclu-
ded the evaluation of PRIMAL as a tool for identification of a
practical process.

This process had been used to study dynamic¢c modelling and
controller design in the past years.

It is Dbuild using standard industrial equipment to imitate prac-
tical conditions as much as possible. No special measures have
been taken to cope with aspects liKe process non-linearities,
natural disturbances and interaction Dbetween variables.
The process 1is multivariable and the various sub-processes have
different (dominant) time constants.

Experiments have been performed to study the effect of several
aspects of experiment design -for system identification- on the
performance and behaviour of a number of identification methods
available in PRIMAL.

In may 1987 I participated in the study of an industrial pilot
process, concerning a glass-feeder, with the PICOS group at
PHILIPS in Eindhoven with PRIMAL as a tool for on-line
experimenting and process identification. Installation and confi-
guration of equipment has been done by PICOS.

Theoretical modelling of the feeder is difficult due to the com-
plicated nature of the process. Several partial differential
equations in time and place are necessary to describe the pro-
cess. The results of the modelling are not reliable and certain-
ly not useful for simulation purposes.

The purpose of this project therefore is to develop an empirical
model of the dynamic behaviour of the glass feeder around a
certain operating point. The main goal of modelling the dynamic
process behaviour 1is the design of a control system.

A description of the interesting aspects of both processes
together with the equipment used for identification 1is given
below.
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§ 3.2 & Thermal-Hydraulic Process

Erocess Description

The process may be divided in a hydraulical part, with water as
running medium, and a thermal part. A cold water flow is first
heated in a counter current heat exchanger made. The heated water
flows through a rubber tube (with a variable length up to 60 m)
into a vessel. From this vessel the water flows freely into a
second -well mixed- Dbuffer vessel where a valve controls the
water flow leaving the system. It shall be clear that an inter-
action exist between the hydraulical and thermal part of the
process. The input variables of the process are the c¢old water
flow entering the system and the warm water flow running through
the heat exchanger heating the cold water. The water levels in
the vessels and various water temperatures in the process are the
output variables.

A nearly identical secundary circuit composed of a heat exchanger
and a transport tube is used to generate ‘coloured’ noise on the
various output variables. The water flow from this circuit enters
the primairy circuit in the first vessel.

Special precautions are taken to stabilize normal process opera-
ting conditions.

The cold water used as input for the system is normally tap-water
stabilized in pressure (about 2 bar) by a special vessel, The
pressure within this vessel is held constant.

The cold water temperature remained nearly constant at about i3
°C during experimentation.

The warm water feeding the heat exchangers runs through a closed
warm water circuit (stabilized at 90 °C). In this circuit the
water pressure is stabilized.

A number of dynamic elements may be distinguished in the pro-
cess:

-1{. the heat exchanger,

-2. the transport tube (not isolated for energy losses),

-3. a first vessel where both heated water flows debounces
in and

-4, a second vessel (well mixed) beneath the first vessel.

A schematic view of the bprocess together with the process
variables of interest is given in figure 3.4.

A list of the variables together with their approximate values in
the operating point is given in table 3.4.
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transport
first vessel

tube
Ty T3 H3
- =< second vessel
Gw
heat exchanger
o Hq'
Ty
To
Figure 3.{ Schematic view of the process.
Name Value
Process Description Operating
Variable Point
Input variables
Q cold water flow primary circuit 100 1/hr
Qg cold water flow secundary circuit 90 1l/hr
Qyw warm water £flow primary circuit 200 1l/hr
Qys warm water flow secundary circuit 200 l/hr
Output variables
To cold water inlet temperature 13 ©C
Ty water temp. after heat exchanger 77 ©C
To water temp. after transport tube 74 OC
Tos as Tp secundary circuit T4 ©C
Hz water level first vessel 40 cm
T3 water temp. at the bottom of the
first vessel 70 °C
Hy water level second vessel 40 cm
Ty water temp. at the bottom of the
second vessel 67 °C
and
Tw warm water circuit temp. after the
heat exchanger 53 ©°C
Taip free air temperature 22 °C

Table 3.4 Variables in the process
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t tati

The hardware used for measuring and processing of the signals
is the so-called PVS-system (Process Signal Processing System).
It is built around a LSI-11/23* micro computer.

The LSI computer is connected with a PDPi1/23 mini computer on
which runs PRIMAL.

Experiment definition is performed with PRIMAL. The measured data
is transferred directly to the PDPi1/23 computer where further
analysis taKes place on-line with PRIMAL.

The actuators (valves) controlling the water flows and sensors
for measuring the water flows and levels are pneumatic. The
sensors used for measurement of the various process temperatures
are temperature sensitive resistors (Py-yp00) made of platinum
grange 0-100 ©9C) with a relative accuracy of about 0.1-0.2

c .

The sensor measuring the water flow measures the pressure dif-
ference over a flange. It can easily Dbe understood that the
relation between water flow and pressure difference is gquadratic.
Also the actuators themselves -the wvalves- have a non-linear
relationship between input signal and resulting flow through the
valve. As a result from the gaugements the other instruments used
are found to Dbe nearly linear. Non-linear correction of the
process signals may be performed with the results of the gauge-
ments.

No special difficulties occurred during the measurements. The
temperature in the second vessel T4 however suffered from a
bad S/KN ratio due to the small temperature variations and a
quantisation error of 0.1 ©°cC.

A non-linearity in the dynamic relations between the input varia-
bles G and Qg the output variables exists due to the depen-
dency of the dynamic properties of the outputs on these inputs.

Experiments for pre-analysis purposes and identification have
been performed. During the identification exXperiments, test sig-
nals are superimposed on the process inputs Q and Qg Qy
and Qgg have been held constant.

MIMO estimates (with Q and Qg as inputs) as well as SIMO
estimates (with Q as input) with additive noise originating from
the secundary circuit are possible.

Identificati 1

To illustrate the dynamics of a number of output variables some
results from identification are given. The results from the pre-
analysis phase in identification and the operations performed for
proper conditioning of the data are descridbed in chapter 4 and 5.

The results from modelling the dynamic relations between the
process inputs Q and Qg and the output variables Tp,
T3, Ty, Hz and Hy are listed in figure 3.2. All
the necessary operations for conditioning of the data have been
performed.
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For each dynamic relation the impulse response of the model is
presented together with the simulation output residual computed
with the application MODELTST.

The following dynamic relations are presented:

Input(s) Output (s)
a Q To
b Q T3
Gs H3
c Q Ty
Gs Hy
Huse
.0 J
——/—\_’
- .8
-l ..
-0 .9 r . l
° so a00 T=o -

TEMNE.. aee .

Figure 3.2.3 Result from modelling the dynamic relation :
Q->Tp estimated with MARKOV, 1783 samples used
50 parameters estimated, sample time = 4 s.
Simulation output residual = 6.4 %

In the impulse response of Ty an inverse response exists.
This inverse response occurs due to the fact that the tubes from
the heat exchanger to the first vessel are not 1isolated. The
heated water 1looses energy during transport. The residence time
depends on the flow Q (or Qg An increasing Q instanta-
neously leads to a decreasing residence time. As a result the
water looses lesser energy and the temperature increases a lit-
tle. Only after the content of the tubes is passed, the tempera-
ture decreases due to the greater Q. In short, an inverse respon-
se may be observed.
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Figure 3.2.b. Results from modelling the dynamic relation :

Q (1) and QGg(2) -> TzH3z estimated with
IVM-LS. 891 samples used, model structure nA:=-8 and
nB:=-6, sampling time = 8 s. Simulation output resi-
duals : T3 5.68 /Z and Hz 0.45 Z%.

As can be seen from the impulse responses it is possible to
describe the dynamical behaviour between Q;Qg and T3z by a
second order process with a time delay. Physically this is expec-
ted if we study the different elements in the path from Q;Qg
to Ts3. An inverse response is found instead of a time delay
due to the process property mentioned above. The response to the
water 1level H3z in the {first vessel 1is nearly a £first order
process.
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Figure 3.2.c Results from modelling the dynamic relation
Q (1) and Qg(2) -> TyHy estimated with
IVM-BT, 1492 samples used, model structure nA=-6 and
nB:=6, sampling time = 15 s. Simulation output resi-
duals : Ty 26.23 4 and Hyg 0.77 4.

The dynamic relation between the inputs and Hy can Dbe des-
cribed Dby a second order process and the relation to Ty Dby a
third order process Wwith a time delay. Due to the quantisation
error in the measured signal T4 a large simulation output
residual results.
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§ 3.3 A Glass-Feeder Process
Intreductjon

The production of modern glass products, for instance sqguare
television tubes, make high demands on the quality of the glass
to be used, with respect to:

- a pure chemical composition,

no visual disturbances in the glass,

a constant absolute temperature and

a homogeneous temperature profile, in place.

The purpose of the identification project is to design a control
system for the feeder to meet the last two demands mentioned.

Erocess Description

The process may be divided in two parts:

-1. the furnace where the glass is made and
-2. the feeder where relaxation and temperature conditioning
of the glass takes place.

In the furnace glass is made out of sand and some additives. Sand
is constantly brought into the furnace by means of two special
screws, one at each side of the furnace. The turbulent behaviour
of the liguid glass in the furnace assures a proper mixture of
all the components.

Through a throat, at bottem level of the furnace, glass pours
from the {furnace into the feeder. The feeder is a rectangular
canal. Two major compartments exist where the temperature of the
glass can be affected. The feeder is several decimeters deep and
wide and several meters long. The height of the glass bed in the
feeder 1is several decimeters. During experimentation a thorn was
mounted in the opening of the spout by which a tube was made of
the glass pouring out of the spout. Different ©possibilities
however exist for different production purposes.

An analog instrumentation and signal conditioning system 1is
used to measured 43 process signals. On 27 different spots in the
oven and feeder temperatures are measured with thermo-couples.

A schematic view of the furnace and the feeder is given in figure
3.3. A list of the variables of interest is given in table 3.2.
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Figure 3.3 Schematic view of the glass-feeder and the position
of the thermo-couples in the feeder
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PICOS/PRIMAL Description

Oven:
INPUT Input of raw material (sand)
GASTOT_T Gas input, furnace
AIRTOTAL Airflow, furnace
FURNPRES Air pressure, furnace
SMEL_HOT Air temperature, centrum furnace
SMEL_B1!1 Glas temp. oven, throat to the feeder

Feeder section 1.:

Input Variables
Fi_GAS
F1_AIR
COOL_AIR

Output Variables
FDFR_FA1
FDFR_F11
FDFR_F1i2
FDMI_FAZ2
FDMI_F1i2
FDMI_Fz22
FDBA_FA3
FDBA_F13
FDBA_F23
FDSP_FA4

Spout:
Input Variables
F2_GAS
F2_AIR

Output Variables
FDSP_FLA
FDSP_FL1
FDSP_FL2
FDSP_FMS
FDSP_FM4
FDSP_FM3
FDSP_FM2
FDSP_FM1
FDSP_FMA
FDSP_FR2
FDSP_FR1
FDSP_FRA
FDSP_FA®G
FDSP_FAT
FDSP_F651

Process OQOutput:
VELOCITY
DIAMETER
THICKNES

Gas flow burners
Air flow burners
Flow of cooling air

Air temp., pos. {, feeder front
Glas temp., pos. i, depth 1

Glas temp., pos. i, depth 2

Air temp., pos. 2, feeder middle
Glas temp., pos. 2, depth ¢

Glas temp., pos. 2, depth 2

Air temp., pos. 3, feeder back

Glas temp., pos. 3, depth 1

Glas temp., pos. 3, depth 2

Air temp., side section 1|

Gas flow burners
Air flow burners

Air temp., left
Glas temp., depth {, left

Glas temp., depth 2, left
Glas temp., pos. 5, center
Glas temp., pos. 4, center
Glas temp., pos. 3, center
Glas temp., pos. 2, center
Glas temp., pos. i, center

Air temp., center

Glas temp., depth {, right
Glas temp., depth 2, right
Air temp., right

Air temp., side spout left

Air temp., side spout right
Glas temp., center of the spout

Velocity glass tube
Diameter glass tube
ThicKness glass tube

Taple 3.2 Variables measured at the glass-furnace/feeder
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In the feeder glass cools down to a temperature of about 1000
OC in the :pout. When cooling down the viscosity of the glass
increases.

The wall of the feeder is made of a ceramic material with a large
heat capacity. The average residence time of glass in the feeder
is about 1-2 hr. The glass floating in the middle of the glassbed
(of a higher temperature) however has a smaller residence time.
In the feeder temperature gradients with differences up to
several tens ©C exist.

The control possibilities, heating and cooling of glass in the
first section and heating in the second section, can be used to
reach the control system purposes:

- stabilizing the temperature of the glass in the spout of the
feeder to assure a constant glass flow through the spout of the

feeder and
- to create an -in place- homogeneous temperature profile to

decrease tensions in the glass.
The process has three jinteresting control varigbles:

-1. the gas/air flow to the burners in sectiont.

-2. The cool air flow in section {1 to cool down the surface of
the glass in the middle of the glassbed, with the air Dblowing
along the glass stream.

-3. The gas/air flow to the burners in section 2.

Instrumeptation
The hardware used for measurement and pre-processing of the
signals is developed by PICOS. This hardware is composed o%:

- analog signal conditioning cards for
- anti-aliasing filtering,
- off-set value correction,
- amplification and,
- scaling of the process signals.
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- ADC/DAC transformers (MIOS-system).

- MicrovVax, operating system ELN, used as measurement com-
puter (front-end).

- MicroVax, operating system VMS on which PRIMAL is running.

- Ethernet connenction between the two computers.

- VI'-100 terminals.

A Tek-4125 graphics terminal

All the equipment (with the exception of the terminals) has been
build in a closed car. The software for the front-end is deve-
loped by PICOS and operates stand alone. PRIMAL runs on the VMS-
Microvax. For proper communication with the front-end a special
pPurpose application (data handler) has been written for PRIMAL.

During experimentation measurement problems due to all Kinds of
disturbances in process and equipment occurred.
For instance micro-wave furnaces were radiating not far from the
equipment car. A glass-bed depth sensor taking samples in the
spout of the feeder disturbed the signals from the thermo-couples
in the middle of the second feeder section.
Because of grave disturbances some signals measured are not
useful for application in the process identification.
The premeasurements performed with PRIMAL delivered 1little
results due to the measurement problems.
A data-logger coupled to the existing process equipment sampling
at a rate of 3 samples per hour delivered some information on the
elementary process dynamics which could be used for the design of
experiments for identification.

Identificati 1t

The various aspects and results from the pre-analysis phase in
identification of the feeder are described in chapter 4 and 5.

Some interesting results from modelling the dynamic behaviour
between the three process inputs mentioned and a number of
temperatures measured at various places in the feeder are presen-
ted in figure 3.4. Estimation has been performed on fully condi-
tioned process data.

Presented are the transient impulse responses, simulated with the
estimated models, and the simulation output residuals, comparing
the model behaviour with the real process behaviour measured.
The latter has been performed on the data used for estimation
(*best fit’).

Results from three dynamic relations are presented., namely:

Inputs Outputs
F1_GAS FDMI_FAZ2
COOL_AIR FDMI_F21i
F2_GAS FDMI_F22
F1_GAS FDSP_FM1
COOL_AIR FDSP_FL 1
F2_GAS

F1_GAS FDSP_Fb51
COOL_AIR

F2_GAS
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1: F1_GAS -> FDMI_FA2 (Mi1), FDMI_F21 (Mi2), FDMI_F22 (M13)

xuas anag vues
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2: COOL_AIR -> FDMI_FA2 (M2i), FDMI_F2it (M22), FDMI_F22 (M23)

M1 anm i
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° 100 200 300
3: F2_GAS -> FDMI_FA2 (M31), FDMI_F21 (M32), FDMI_F22 (M33)

Figure 3.4.a Results from modelling the dynamic relation:
Inputs -> FDMI_FAZ2; FDMI_F21{ and FDMI_F22 estimated
with MARKOV, 912 samples used, response length:=-65.
Simulation output residuals : FDMI_FAe : 2.98 %,
FDMI_F21 : 3.64 7 and FDMI_F2e : 6.47 %
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3.4.b Results from modelling the dynamic relation:
Inputs -> FDSP_FLi and FDSP_FM{ estimated with
IVM-MS, 912 samples used, model structure nA:=5,
nB:=5, nC:=-3 and nb:=2.
Simulation output residuals : FDSP_FL1 : 2.25 %,
and FDSP_FM1i : 8.96 7
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Figure 3.4.c Results from modelling the dynamic relation:
Inputs -> FDSP_Fb51 estimated with MARKOV, 9142
samples used, response length:=65.
Simulation output residual : 1.43 7%
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As mentioned is the main purpose of this identification project
the development of a model of the dynamic behaviour of the pro-
cess for control system design purposes. Identification however
often also increases process understanding.

From the estimated models the following, prudently, conclusions
can be drawn:

- If we study the impulse responses of the temperatures in sec-

tion

of the feeder we can observe two interesting process

properties:

-1.

-2.

- The

The impulse responses of the various temperatures in the
feeder are almost instantaneous for all depths, as

well for the gas flow (Fi_GAS) as for the coolair input
(COOL_AIR). ’
A possible reason for this is that the main mechanism

for heat transport is radiation. The largest radiating
object in the feeder is the surface of the feeder roof.
Burning gas as well as coolair have immediate influence
on the temperature of this surface.

After the fast response a slow tail occurs which
originates from the heating or cooling of the feeder
wall due to the impulses in the inputs.

latter can be observed in the impulse responses of the

temperatures in the middle of section 2.

The responses of the temperatures at the wall of the feeder
have a much more pronounced tail then the temperatures in the
middle of the glass bed. This effect is caused by the differen-
ces in residence time of the glass at the side and the middle of

the feeder.

- The

response in the spout of the feeder is almost totally

affected by the gas flow in section 2. The control variables in
section {1 have hardly any effect on the temperature FDSP_F51.



EXPERIMENT DESIGN IN PROCESS IDENTIFICATION Page 4.1

Chapter 4. EXPERIMENT DESIGN IN PROCESS IDENTIFICATION
§ 4.1 Introduction

Generally two types of environments for identification pro-
Jects can be distinguished:

1) No test signals on the process allowed.

In an industrial surrounding often normal operating conditions
may not be disturbed by application of input test signals. Only
natural process data is available from logged inputs and outputs.
Often the process signals do not contain enough information to
model the dynamic behaviour of the process. Correlations between
noise and input signals may exist due to control loops operating
during measurement. Application of the different identification
methods may not be sucessful due to a bad S/N ratio or the number
of observations too small.

Generally the identification methods in PRIMAL do not function
properly if 1little data with a low information content is avai-
lable. No applications to tacKle these Kinds of identification
problems adequately are available (yet).

2) Iest signals allowed but restricted.

If experiments are allowed but normal process operation condi-
tions may not be hindered too much with respect to the amplitude
of the 1input test signals or the length of the experiments,
design of experiments and especially optimal experiment design
becomes very important. No attention has been given to optimal
experiment design 1in the PRIMAL project vyet.

Experiment design 1is one of the major steps in an 1identification
project. It determines the information content of the measured
process data, which sets a limit on the achievable performance 1in
the modelling effort,

when sufficient experimental freedom is allowed concerning the
test signals, there seems to be no real problem in gathering
appropriate data for parameter estimation. With some simple rules
proper design of experiments for identification 1is possible.

Two types of experiments 1in identification can be distinguished:

-1. preliminary experiments for pre-analysis of the dynamic pro-
cess properties
-2. experiments for identification.

Prior to, with some simple rules, identification experiments can
be designed, a thorough analysis of the elementary dynamical
pProcess properties has to be performed. If not enough Knowledge
about the latter is available preliminary experiments have to be

carried out.



EXPERIMENT DESIGN IN PROCESS IDENTIFICATION Page 4.2

These experiments may also be used for obtaining a better under-
standing of the process dynamics which might be useful with
conditioning of the measured data, parameter estimation and vali-
dation.

Some aspects of the pre-measurements phase together with the
results from the studied processes are discussed 1in paragraph
4.2,

Some aspects of experiment design for 1identification are dis-
cussed in paragraph 4.3.

§ 4.2 Preliminary Experiments

In the pre-measurements phase a number of preliminary experi-
ments are performed to determine the elementary dynamical proper-
ties of the process. This information is needed for the appropriate
design of experiments for identification.

The goal of this phase is to determine the following experiment
parameters:

-1. the process inputs and outputs

-2. the appropriate sampling rate Ty,

-3. input test signals (type,amplitude,spectra)

-4. the duration of the experiment N.T, (identification
time).

To determine these parameters information is needed on the follo-~
wing process properties:

-1. Steady state gains Kj, of all the input-output rela-

tions of interest, (sensivity analysis),
-2. dominant time constants T; (first order process
approximation),

-3. time delays Tq.,
-4, linearity / non-linearity in the operating point:
(in PRIMAL only applications for estimation of linear
models are available)
- static (e.g. instrument) non-linearities: y:=f(u)
with £ a nonlinear function in u or
- dynamic non-linearities
Or other non-linearities like:
- hysteresis or

- saturation
-5, spectrum {(bandwidth ) of the process signals and 1f pos-
sible of the noise, disturbances occurring in the pro-

cess signals during normal process operation,

-6. dynamic ranges of the process signals,

-7. stationarity of the process,

-8. technical constraints, e.g limits on the measurement
time N.T,, the amplitude A of the input test signals
or the shape and frequency pattern of the input test
signals.
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The sampling rate is an experiment parameter that has to be
determined in the pre-measurements phase. Often this 1s not a
critical choice. Relatively fast sampling with respect to the
dynamics of the process will generally be adequate, 10 or more
samples within the dominant (first order approximation) time
constant will be sufficient.

Also the amplitude of the test sighals to Dbe used in the
Preliminary experiments has to be chosen.

During the experiments these parameters values may be adapted
according to the Knowledge gained.

In the preliminary experiments a-periodic test signals 1like step
and crenel functions have been used to gather Knowledge about the
dynamic properties 1 to 4 mentioned in the list above.

They are easily applied to the process. In literature (see Rake
/14/ and Strobel /18/) many methods are presented for estimation
of parameters of 2-nd and higher order models with time delays
from step responses. Here only the parameters of the process in
first order approximation are estimated. Information about the
dynamic properties in first order approximation is sufficient for
the design of 1dentification experiments (see paragraph 4.3).

Process properties 1like steady state gain X, time constant T
and time delay Tq c¢an Dbe determined from the output
signals responses on a step input test signal.

Investigation of the linearity of a process in 1its operating
point with crenel functions applied to the process 1s possible by
observing these dynamic properties as function of the amplitude
of the test signal: {K,T,Tq!} = £(A).

Another method is performing experiments for identification with
different amplitudes of the 1input test signal(s) and comparing
the modelling results later.

wWith Dboth processes studied linearity of the dynamic relations is

investigated with use of crenel functions. From the transient
response of each step in the crenel function K 1s determined as
function of A, Other process non-linearity 1like hysteresis 1is

easy to study with crenel-function input signals.

The pre-measurements phase in identification 1is not efficient.
The step responses are easily disrupted by signal disturbances
liKe trends, which maKes it hard to determine the process para-
meters accurately.

The feeder process step responses suffered heavily from low
frequency drifts. Determination of the dynamic properties was
difficult due t0 these signal drifts. In figure 4.1 some step
responses from glas temperatures in the feeder are given. The
amplitude of the input test signals used is 107 of the normal
operating condition values.

For MIMO processes an analysis using step responses is very time
consuming and gives little information. Generally only the most
important sub-processes are studied. The information from these
sub-processes is used for experiment design for identification of
the whole process.
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At the step response analysis of the feeder the 1input signals
applied to the three feeder inputs have been offered in the
pattern 1listed Dbelow:

with 1 = +0 /7 and 0 = -~-10 7 of the operating point values of the
inputs (= 0 %), 8 steps have been performed, only one step each
time.
Input ]
+
F1_GAS | 0 0 0 i 1 0 0 1 1
i
COOL_AIR ] 0 1 1 i 0 0 0 0 1
]
F2_GAS ] 0 0 1 1 1 1 0 0 0
|
' MR DA R | T I
[
- ..l
b R SO 4
e ]
. RS N 2 S e I
! BRI e J
r i 1
1 21 L 1 L I . ]
T T 2 —-r T v T ) B LA | T T T T T T T : g T 2 . 4 . ) 1 . 2 v "™ L 1 A v
R e N 1T
R 4t 0N

O - —0
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ek,

Figure 4.1 Step responses in the feeder spout temperatures:
FDSP_FL1{ ,FDSP_FL2 and FDSP_F51.
A = 10 7 of value normal operating conditions
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As can be seen 1in figure 4. the transient time of the step
responses, for the feeder temperatures in the spout, is about
greater than the time period (=1 [-])) between two steps. The real
transient time is hard to determine due to slow drifts.

The time constants T of the feeder temperatures for all three
inputs is about 0.25. The time delay in the response of FDSP_F51
is about 0.05 for the inputs Fi_GAS and COOL_AIR.

From the c¢renel function experiments in the feeder project little
useful information resulted concerning the linearity of the pro-
c¢ess in the operating point due to shortage of time and measu-
rement problems.

The selection of the amplitude of the input test signals used in
the experiment for identification 1s based on the results from
the sensivity analysis.

Some results from the step responese experiments on the
thermal-hydraulic process concerning the process properties T
and Tq are given in table 4., Also the Tgsg!
values are determined for the different output variables from the
step responses. The amplitude A of the input test signal used is
about 20 l/hours. The step 1s applied to Q.

T . Ta - Tgs
Process
Output [s] [s] {s]
Ty 20 2 50
T 30 10 60
vessel 1
T3 70 30 " 100
H3 80 0 230
vessel 2
Ty 250 100 1200
Hy 1000 o) 1700

Table 4.1 Results from the step response experiments of the
thermal-hydraulic process

From the transient response of each step in the crenel function
K as function A has been determined for a number of process
outputs i. Non-linearities 1like hysteresis have not been found.

! The value Tgs of a step response is the time at which
95/ of the steady state value is reached.
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Static non-linearities of the form y = f(u) can be found from the
results of the gaugements. For the thermal-hydraulic process two
non-linear relations were found. The valve controlling the cold
water flow Q 1is non-linear and the flow measurement sensors
produce an output signal (a pressure) non-linear with the flow.
Another way to study a (possibly) non-linear relation 1is fre-
quency-analysis o¢of the output signal in application of a sine
input signal (Meerman /25/). Harmonics in the spectrum occur if
the input-output relation is non-linear. This can be seen easily
by fourier transformation of the taylor sequence of the function
y = £{u).

From the results of the sensitivity analysis, using step func-
tions, an estimation of the dynamic ranges of the process signals
1s possible. Together with the results from the linearity analy-
sls an adequate amplitude of the input test sighals for identi-
fication is determined.

Stationarity of the process can be observed by examining the
Process signals under normal operating conditions. This may also
be used for analysis of the disturbances in the process signals.
Spectral analysis of these disturbances might be of help in later
steps of the process analysis e.g. determination of the proper
trend filter.

In the analysis of the thermal-hydraulic process some
experiments have been performed using gaussian white noise test
signals. Spectral analysis 1s useful for determination of the
frequency band of the process. Especially for MIMO processes with
dynamic relations with different time constants (see table 4.1
vessel { and vessel 2) this experiment parameter 1is important.
The dynamic relations of interest in the spout of the feeder all
have time constants of the same magnitude as can be seen from the
responses of the step 1input signals. Some simple rules based on
the estimated time constant, can be used for design of an identi-
fication experiment. A description of these rules 1s given 1in
paragraph 4.3,

§ 4.3 Experiment Desigpn for Process Identificatiopn

To design input signals for process identification a number of
experiment parameters have to be determined.
An acceptable estimation of the process parameters within the
length of the experiment must be possible.
The experiment parameters of interest are:

-1, signal type;
Kind of test signal to apply to the process inputs,
-2. bandwidth B;
frequency band in which the test signal excites the
process,
-3. sampling rate Ty,
-4 . amplitude A
-5. experiment length N;
number of records to be taken.
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A number of simple rules have been proposed by different authors
to determine the experiment parameters.

The first choice that has to be made concerns the type of the
input signal. It 1s determined by the concept of identifiability
of a process which is a joint property of an identification
experiment and a model estimation. It establishes that the model
Parameters can be estimated consistently from the data obtained
from the process.

This means that the parameter estimates A& converge to their
"true" values a¥* for the number of observations N tending to
infinity:

(4.3.1) lim (4- a*) = 0
N—w

Identifiability of the process depends on a number of factors:
(Norton /23/)

-1, scope and gquality of the observations which is related to the
conditioning of the measured process data (see chapter 5),

-2. nature and location of the inputs related to the design of
experiments for identification,

-3. parametrisation, model structure selection and

-4, properties of the estimation algorithm.

The requirements on input signals in an identification experiment
to ensure adequate excitation of the process 1long enough to
permit the estimation to c¢onverge are called "persistency of
excitation conditions". These c¢onditions specify how many 1inde-
pendent components have to be present in the input signal.

A detailed description of the conditions of an input signal {uj
to be persistently exciting can be found in Norton /23/.
Persistent excitation implies that the power spectral density
dyu(w) of the 1input signal does not vanish inside the
frequency range that has to be identified :

“min ® ¢ omax:’

Pracucally the input signal bandwidth must at least be compa-
rable to the process bandwilidth.

Non-zero power at a minimum number of frequencies may ensure
asymptotic convergence but does not guarantee satisfactory finite
sample performance. Also the energy in the input signal 1is of
importance.

A convenient deterministic signal which satisfies these proper-
ties is the so-called pseudo random binary noise signal (PRBRS).
A detailed description of this signal can bde found in EyKhoff
/13/ and van den Boom et. al. /6/.

The PRBNS has an approximate white spectrum up to a certain boun-
dary frequency determined by the sampling time T, and the
minimum pulse duration T (=axT,) of the signal chosen.
The amplitude A of the two signal levels is constant. By changing
the minimum pulse duration the {frequency range can be modified.
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Determination of these three signal parameters can be performed
with a trial and error approach: from selection of the experiment
Parameters followed Dby a model estimation and successive valida-
tion back to experiment parameters selection until an appropriate
model 1is achieved. This in fact is the fourth loop in the metho-
dology 1in process identification mentioned in chapter 2.2.

Another way 1is to use the simple ruies as mentioned by various
authors, Isermann /i7/ and EyKhoff /13/. A rule described below
used in identification of the feeder process to determine the
frequency range to enhance proved to be very useful. For proces-
ses 1like the thermal-hydraulic process with dynamilc relations
with different time constants different experiments might be
needed.

The first important parameter of the PRBNS to be determined
concerns with the bandwidth of the input test signal.

The boundary frequency fo of the PRBNS is the frequency up to
which the signal has an approximate "white" spectrum. This value

1s determined »y the minimum pulse dqduration time T. fo = /T
with T = Tox\.
The power spectral density of a PRBNS is given Dby:
(4. 3. 2)
sin(wfT) 12 o 2n
$(£f) = AS. T [———] L 3(2wf-K. —)
nfT K--m Tp

with Tp the cycle time of the signal (see van den Boom /6/).
Determination of T can be performed with the following rule:
generally: the fastest variation in the input signal must lead to
a visible change in the output variables. This fastest variation
must be sampled at least 5-10 times.

- Determine the bandwidth B of the process. In first order pro-

cess approximation B = i1/t. In a MIMO process the smal-
lest time constant has to be taken.

- Take the frequency Bpp at which the power spectral density
¢(Bpg) of the process has decreased about 20 dB with

respect to ¢(B).

For a first order process the frequency Bpp is about 5xB.
- The boundary frequency of the PRBNS is chosen:

fo = Boo z 5x%B = 5/7 (Hz),

and thus the minimum pulse duration time: T = T/5 s.
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The sampling time T, is chosen 1/5-1/10 of the minimum pulse
duration time T (A = 5 - 10) to prohibit aliasing in the
spectra of the process signals. Also easy repair of the distur-
bances in the process signals is possible if enough samples are
availadble. The frequency range enhanced, although the input power
density spectrum is not "white" anymore, by the input signal in
fact runs to 1{/T,. Process modes may be studied up to the
Nyquist frequency £ = 1/2.To Hz. The data redundancy is used
to repair disturbances in the measured process signals.

For low-pass processes Isermann /17/ gives the following rules
for determination of the sampling rate Ty

1) using the Shannon’s theorem:

| H(wpag) | = 0.02 .. 0.1
0f the value at the pass band

2) with the estimated time constants:

To/Tp = 0.18 ... 0.36 with

Ty = (ZTa)numerator - (LTb)denumerator +
(Tt)time delay

and
3) using the transient time Tgs:
To/Tgs = 0.09 ... 0.18

Rules 2 and 3 have been used for the thermal-hydraulic process.
Due to the different time constants of the dynamic relations the
choices have Dbeen made dependent on the relations of interest.
For identification, within one experiment, of Tp, T3 and

Hy T = 16 s has been chosen. For identification of T3,

Hz, Ty4 and Hy T = 30 s. has been chosen. ’

As will be clear from these rules the selection of T and T,

is not really critical. As long as the process modes of interest
are sufficiently excited no real problems will occur.

In the first rule the sampling time 1is immediatly related to T
(To = T/2). The selection of the sampling time however is
also influenced by:

- possible aliasing which might occur in the spectra of the
process signals 1f Ty is chosen too large and no
hardware anti-aliasing filters are present.

- easy repair of signal disturbances if enough samples are
available,

- the sampling time in application of the derived model,
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- accuracy requirements of the model; the 1influence of
To on the accuracy of the estimated steady state gain
K has been studied by Isermann /17/. With a small sampling
time the estimation becomes inaccurrate.

Also the numerical conditioning of the estimation methods
is influenced by the choice of the sampling time. A small
sampling time might lead to sigularities in the estimation

methods.
If the sampling time is chosen too large the dynamic
behaviour 1is not described precisely. The model order

reduces. Fast dynamics ¢an not be modelled.

The decimation factor which can be chosen in analysis of the
measured process signals 1is limited to the range ([{,A] for a
PRBHNS. For later analysis it 1s therefore not convenient to
choose a prime number for .

The amplitude of the test signal is determined by the results
from the sensivity analysis. The amplitude has to be chosen such
that all the process modes of 1interest are sufficiently excited
by the input signal. Technical 1limits and the results from the
linearity analysis however restrict the allowable amplitude of
the input signal.

At both processes studied non-linearities were found not to play
a significant role in the 1identification.

The length of the identification experiment N 1s determined by
the number of samples required for adequate estimation of the
parameters of the system. Desired model accurracy, the time
available for the experiments and the S/N ratio play a role here.
For the feeder about 12000 samples have been taKen in the identi-
fication experiment. wWith a sampling time of { s. with =10
1200 samples remained after decimation of the measured data.

For the thermal-hydraulic process N depends on the studied dyna-
mic relation. For identification of the output variables of the
second vessel experiments of about 7 hours have been performed.

To study the effects of the experiment parameter concerning the
bandwidth of the input signal a number of experiments have been
performed with varying boundary freguencies of the PRBNS. The
sampling time used in the experiments is 2 s. A total of 3600
samples have been taken. The amplitude applied to Q is about 20
l/hours.

A total number of five experiments have been performed with
2, 4, 8, 16 and 32 s for the primairy circuit and 1, 2, 4, 8 and
16 for the secundairy circuit.

The dynamic relations studied are the SISO process with input Q
and output Tp and the MIMO process with 1inputs Q and Qg
and outputs T3 and Hs.

Decimation of the measured samples of the data sequences 1is
performed with the maximum factor allowed (determined by the
secundairy circuit: 1 (exp.d), 2 (), 4 (3), 8 (4) and 16 (5).
As well as the frequency range enhanced as the sampling time
after reduction varies.
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Two 1identification methods have been used:

- non-parametric identification with MARKOV; the ratio between
the number of samples available and the number of markKov-para-
meters estimated is constant,

- and a parametric identification with IVM,

The results of the estimations are presented in figure 4.7, The
impulse responses are presented together with the validation
result in an output error simulation on the data used for estima-
tion.

Interesting aspects:
1. The equation error estimation IVM-LS of the SISO process fails

in data sequence { (with T = 2 s.) due to the inverse response
of the process.

This effect may possibly be explained by the fact that an
equation error parameter estimation method uses the measured
output signals in the estimation criterion. The prediction

(high frequency) behaviour of the equation error model will
generally be good. It can be proved (van den Boom /6/) that
the first impulse response samples are estimated very good by
an equation error method.

2. The equation error estimation IVM of the MIMO process leads to
unstable models for the data sequences 4 (with T = 16 s.) and
5 (with T:=32 s.) for model orders {nA;nB] higher then {2;2}.

Model order reduction occurs due to the large sampling time
after decimation. This can be seen clearly in the estimates of
the SISO and the MIMO process for high sampling time values T
after decimation. In estimation of too high order models, if
the measured data 1s not rich enough, pole-zero cancellations
of poles outside the unit circle might fail. In study of
the pole-zero plots of the estimated unstable models this
is seen.

3. The output error estimation MARKOV of the SISO and the MIMO
process 1s at all data sequences successful. Although some -
times oscillations occur in the parameter estimation is the
non-parametric estimator markov robust with respect to the
experiment parameter concerning with the band width of the
input signal and the sampling time after decimation. In any
case a model is estimated with a good output simulation beha-
viour (see figure 4.2).

4, The estimation of the nearly first order process from Q to
H3 is at all experiments succesful.
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Figure 4.2.3 Estimation results (MARKOV) on the dynamic relation
Q->Tp, N=-3600, To = 2 s. Decimation factor =
1, 2, 4, 8 and i16. Simulation output residuals
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Figure 4.2 .c Estimation results (MARKOV) on the dynamic relation
Q;Qs->T3H3z, N = 3600, To = 2 s.
Decimation factor := 1, 2, 4, 8 and 16. Simulation
output residuals
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Figure 4.1.4 Estimation results (IVM) on the dynamic relation
GQ;Qg->T3H3, N = 3600, To = 2 s.
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§ 4.4 Conclusions

The simple tools used during the pre-measurement phase 1liKe
step responses for determination of sensitivities, time constants
and time delays and crenel functions for 1investigation of
linearity of the process 1in its operating point are found to Dbe
easily disturbed. Little information 1is gathered 1in relatively
long experiments.

Many empirical rules exist for the design of experiments for
identification based on the information about the dynamic process
properties. A global investigation of the linearity of the pro-
cess 1in 1its operating point with respect to the determination of
the amplitude to be used 1in the identification experiment 1is
sufficiént. Also 1is it possible to determine an adequate band
width and sampling time of the input signal based on an estima-
tion of the smallest time constant of the process.

If excitation of the process is adequate (visible) and enough
data can be gathered no real problems exist. The measured data
from practical processes however generally contains all Kinds of
disturbances. The next important step in an identification proce-
dure therefore is the conditioning of measured process data for
identification. This is discussed in detail in chapter 5.

The performance and behaviour of the identification method
MARKOV using an output error criterion for parameter estimation
i1s found to be rather insensitive with respect to the experiment
parameters. The first step in the estimation method IVM (IVM-LS)
using an equation error sometimes fails. If the sampling time
{after decimation) is small with respect to the dynamics of the
process prodblems with inverse responses can occur, If the
sampling time 1s large and the information content of the measu-
rement data is 1low problems in estimation of high-order models
can occur.
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Chapter 5. Data Conditioning in Process Identification
§ 5.1 Introduction

The set of raw input-output measurement data collected during
experiments on practical (industrial) processes 1is seldomly
suited for direct use in analysis and identification. All types
of disturbances appear in the data which have to be removed
before identification can be performed.

Before the data is filtered, first a thorough analysis of the
data has to be performed. Spectral analysis is used to check if
the freguency range enhanced by the input signal is adequate (see
paragraph 4.3). With spectral analysis also a first impression of
the possible disturbances , low or high frequent may be obtained.

Visual inspection of the measured data for outliers and other
disturbances 1is the next step to be performed. Not all outliers
in the data can be filtered with an automati¢ routine, Some of
the outliers have to be repaired manually.

In paragraph 5.2 the application FILTER for conditioning of
measurement data is discussed, Paragraph 5.3 treats a protocol
for solving an important question in data conditioning : how do
we determine the proper filter for removing the trends from the
measurement data?

§ 5.2 Data Conditioning ip PRIMAL:
ihe Application FILTER

In PRIMAL only an (on-line) application named PREFILTER was
available for filtering of the measurement data. This application
supports reduction of measured data by means of averaging a
contiguous set of samples with given length and trend filtering
with a moving average or an exponential filter. For application
of PRIMAL in identification of industrial processes this proved
to be insufficient. An off-line application named FILTER was
developed for pre-processing data.

A number of operations are provided which may be applied indepen-
dently from one another. The supported operations are:

-1, Signal Selection,

-2. Delay Correction,

-3. Signal Repair,

-4, Filtering of Outliers,

-5. Static Non-Linear Correction,

-6. Trend Correction & HNoise Reduction,
~7. Data Reduction,

-8, Offset Correction and Scaling.

The different operations are discussed now seperately.
Attention will be spent to the meth~ds applied in the different
steps and some important aspects.
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Step {: SIGNAL SELECTION

In the first step a group of signals and the range of samples
from these signals 1is selected from the process data.

Step 2: DELAY CORRECTION

After estimation of the time delays in the process signals with

correlation analysis or impulse response estimation, correction
may be performed.
In this step a delay correction may be specified for each selec-
ted signal. A positive delay d means the signal is shifted for
d samples to the future (with respect to the original time
index). Because of this shifting d samples preceding the selec-
ted startsample are shifted into the range. When such samples are
not available the first sample is repeatedly shifted in (and has
therefore extra weight). Analogously a negative delay shifts in
samples at the end of the range.

Typically delay correction is useful in the following cases:

- when the dynamic response of an output signal to an input
signal is delayed for a large, fixed time interval (transporta-
tion time, delays in sensors, ..). often the delay is Known and
not interesting. However, when it is not taken into account
explicitly, it leads to unnecessarily high order models.

- restoration the natural interrelation of the signals. When
measured process signals are used as inputs for the model the
input signal should be corrected for the delays introduced by

the measurement itself. Otherwise apparent non-causal behaviour
of the output on the input might result.

Step 3: SIGNAL REPAIR

During data-aquisition in practice all Kinds of signal dis-
ruptions are possible that do not represent dynamical behaviour
of the process, but which are the result of senscr failure or
other equipment malfunctioning. Repair 1is necessary when the
disturbances have a high energy content.

It is often very difficult to automatically recognize and repair
these disruptions. The human eye however proves to be most
succesfull in recognizing disturbance patterns. FILTER therefore
provides facilities for the user to manually repair the signals.

The user selects so-called ‘repair intervals’. A repair interval
consists of a signal name , a begin sample nb, an end sample
ne and a repair method. The range of samples nb

ne of the selected signal will be repaired, using one of the
following methods:
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MEAN ¢ The signal values are replaced by the signal mean,
calculated over the sample range specified in step
1 minus the selected repair intervals.

INTERPOL: The signal values are replaced by values resulting
from a linear interpolation between the signal
value at sample nb-1 and the value at sample ne+i.

CONSTANT: A specified constant value is added to the actual
signal values in the specified range.

REPLACE: A specified constant value replaces the actual
signal values in the specified range.

Step 4: FILTERING of OUTLIERS

In (statistical) literature a number of outlier detecting
algorithms are proposed. After application of a regression, be-
tween the independent and dependent variables, outliers in the
dependent variables can be detected by observing the residuals of
the dependent variables. In data from practical processes however
outliers may be found as well in the outputs as the inputs.
FILTER offers several routines which treat the signals indepen-
dently. In application of the outlier filter one has to remember
that outliers generally have a high energy content with great
influence on the variance of the unfiltered signal. In selection
of the parameter controlling the performance of the detection,
the ®"Shaving Strength", therefore small values proved to be

proper (1.5-2). The implemented techniques for outlier detection
use an amplitude criterion. Signal values that exceed the expec-
ted range of values are presumed to be outliers. One of the

supported techniques combines an amplitude with a frequency cri-
terion, assuming that outliers are essentially high-frequent.
Dependent on the chosen method also parameters like a cut-off
frequency or the size of a data subset have influence on the
performance of the detection. The detection methods note the
position of outliers and transfer this information to the correc-
tion methods. For each desired signal a range of samples must be
specified. The computations will take place only on these data
ranges.

The following detection methods are provided:

LEVEL: This method is recommended for process signals
with no significant trends. It uses a straight-
forward amplitude criterion. When the signal
shows a significant trend it might not function
properly. The mean x and the standard deviation
o(x) of the signal x(t) are computed over the
selected data range. Outliers satisfy the follo-
wing test:

(5.2.1) | X(t) - %X | > S.0(x)

with S the shaving strength.



DATA CONDITIONING IN PROCESS IDENTIFICATION Page 5.4

TREND : This method might be used for signals contami-
nated with slow drifts. The signal X(t) 1is
first filtered with a high-pass filter to eli-
minate the slow drifts from the signal. Subse-
quently the standard deviation of this filtered
signal is computed to define, together with the

shaving strength, an upper bound on the accep-
ted signal amplitudes.
For the detection of outliers the following

test is performed on the filtered signal:
(5.2.2) | xnp(t) | > S.ohp(x)

with index ‘hp’: high-pass filtered.

MEDIAN : This method starts the same as TRERD. After trend

correction the standard deviation is computed
to define an upper bound for the amplitude

criterion.
The original, unfiltered, signal is now divided
into contiguous subsets of samples. From each

subset the median is computed.
Outliers satisfy the following test:

(6.2.3) | €(t) - median(x) | > S.onp(x).
Unlike +the average signal value of a data sub-
set the median value is rather insensitive to
the occurrence of outliers in the set. This

method may also conveniently be used for deter-
ministic signals like PRBHS.

BACKX : This method uses a combined amplitude and
frequency criterion. The method is developed by
T. Backx (see Backx /2% /).

First the mean and variance of the high pass
filtered signals are computed (as with TREND).
The detection starts with low-pass filtering of
the unfiltered original data.

Assuming that spikes are essentially high freqg-
uent these can be detected by comparing the
original signal with the low-pass filtered
signal:

(5.2.4) | X1p(t) - X(t) | > S.Opp(x)
with index *jp’: low-pass filtered.

The high and low-pass filters used in the detection steps are
2nd order symmetric digital IIR (Infinite Impulse Response)
Chebyshev filters, introducing no phase shift. These filters are
designed according to the desired cut-off frequencies. The design
is Dbased on the analog *‘normalized’ low pass Chedbyshev filter
(see Jong /9/).
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The bilinear mapping method is used for transformation to a
digital high or low-pass filter. For proper filtering of the
first samples startup with past data samples is possible. If no
data samples are preserved the first available sample 1is
repeatedly used. In application of these filters in the different
detection methods the transition bandwidth has to Dbe considered.

The following correction methods are provided:

MEAN : Replaces the outliers with the signal mean,
computed over the selected datarange, corrected
for the signal values of the outliers.

INTERPOL : Replaces the outliers with the interpolated
signal,

MEDIAN : Replaces the outliers with the subset median
value. Only applicable when the detection method
is also MEDIAN.

Step 5: STATIC HNON-LINEAR CORRECTION

From the gaugements non-linear relations of for instance in-
struments may Dbe discovered. If a linear model of the process has
to be formed it is necessary to correct for the Known non-
linearities.

In this step a number of static non-linear filters may bDbe de-
fined. Besides correction of a non-linearity also signal repair
may be performed by specifying a data range for the filter.

The filters have the following format:

(5.2.5) y(t) = a0 + at.x(t) + a2.x2(t) + a3.x3a4 (1)

with: x(t) the input signal
y(t) the corrected signal.

The user supplies the coefficiénts a; and a data-
range for application and specifies which filter to use
for each selected signal.

Step 6: TREND FILTERING & NOISE REDUCTION

Slow drifts (trends) are found to be a severe problem in mea-
sured data from practical (industrial) processes. Several authors
(Isermann /17/ and Baur /25/) have done some research on proper
trend filtering of the data. All the methods proposed have the
disadvantage that parameters of a preproposed trend model have to
be estimated in parallel to the process parameters. High pass
filtering of the data 1s a much simpler method for detrending
data. If the spectral band of the trends is close to the spectral
band of the process a difficulty exist in establishing of the
proper trend filter to use. We do not want the {filter to elimi-
nate process information from the data, but we also do not want
to leave trends in the data.
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A protocol, making use of the behaviour of a Least Squares para-
meter estimator on data with trends, is developed for deter-
mination of the proper trend filter. A description of this proto-
¢col 1is given in chapter 5.3

This steps offers several filters for trend correction and
correction of high frequencies representing noise.

Using a high-pass filter (with cut-off frequency Wey)
removes the signal trends caused by the drift. By using a low-
pass filter (with cut-of¢f frequency Wep>Wey) the
noise level may be reduced. A band-pass filter can Dbe used to
perform these actions simultaneously.

A Dband-stop filter may be used to extract a specific frequency-
range from the process signals.

Digital FIR (Finite Impulse Response) filters (see literature
/9/,/10/ and /i1/) are used to approximate the desired frequency
characteristic H(w):

0 for w < wcy
(5.2.6) H(w) = 1 for wey ¢ W
0 for wegp < @

Wep
wg/2

-~ -~

with wey,wep ¢ cut-off frequencies
Wg : the sample frequency

For the approximation of this filter the frequency scale 1is
divided into three sections : the pass band (H # 1), the transi-
tion band and the stop band (H & 0)

The desired frequency response H(w) 1is expanded into a
fourier series. A {finite order unit sample response sequence
h(k)’, representing a digital filter of the FIR type, is obtained
by truncating the infinite fourier series and performing an
inverse z-transform. The oscillations occurring in the frequency
response due to the truncation can be reduced by application of
a window function w(K). The £filter coefficients sequence as well
as the window function is symmetric around K:0,

The resulting response sequence h(kK) is found Dby multiplying
h(k)’ with w(Kk):

(5.2.7) h(k) = h{(K)»w(K) for K = -M:M
with M the filter order.

Besides the cut-off frequencies also the width of the transition
band and the type of window to be used (SQUARE, HANNING, HAMMING
or BLACKMAN) may Dbe specified.

The type of window influences the the maximum pass band and stop
band ripple and the width of the transition band.

Table 5.4. presents the window functions and some characteristi-
cal values of the FIR-filters designed with these windows.
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Maximum Transition
Stop Band Bandwidth

Ripple (wg/H)
SQUARE -21 dB 0.9
HANNING -44 dB 3.1
HAMMING -53 dB 3.3
BLACKMAN -74 dB 5.5

Table 5.1 Characteristical features of the FIR-filters designed
with the different window functions. For a given fil-
ter order M a smaller stopband ripple is exchanged for
a larger transition bandwidth.

The data is filtered by convoluting the unfiltered data with the
symmetric impulse reponse of the filter. No phase-shift is
introduced due to the symmetry of the impulse response of the
filter. A number of filters may be defined and for each signal a

filter may be selected. The original data is divided into a
filtered signal and a signal that has been filtered out, which
is stored in a separate dataset. For proper filtering at the

boundaries of the selected data range the buffer may be extended
at the beginning and the end with samples from the raw dataset
and to use them for starting the f£filter properly. The number of
extra samples used dependends on the order of the filter, The
corrective steps 2,4 and 5 are also applied to the additional
data. When insufficient data is available the start and stop
sample of the input dataset are repeatedly used.

Step 7: DATA REDUCTION

Using a high sampling frequency for the experiments leads to a
large amount of data that may be conveniently used for the pre-
viously discussed correction steps. Also aliasing may be prohi-
bited if a high sampling frequency is used. To prevent unneces-
sary high order models and numerical problems the excess of data
must be removed in the data reduction step. The data reduction
factor redfac 1is supplied Dby the user. Two methods for data
reduction are available:

DECIMATION : the data is divided into contiguous groups of
redfac samples. Of each group the first
sample is selected.

AVERAGE : The data is divided into contiguous groups of
redfac samples. The samples in each group
are averaged and result in one new sample.
Consider the filtering effect of this opera-
tion.

Using PRBHNS input test signals the reduction factor is limited to
the range [{,A} with A the minimum pulse length.

If a PRBHS is used as input signal the maximum reduction factor
2 1s used. In identification of a process with more different
time constants it may be convenient to use reduction factors

other than A.
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Step 8: SCALING & OFFSET CORRECTION

Offset wvalues in the signals may cause biased results in the
estimates. To increase accuracy in parameter estimation scaling
may Dbe performed on the process signals.

After calculation of the signal means and variances of the condi-
tioned data, the data may be transformed to:

E:=0 offset correction: y(t)=Y(t)-Y) and

o=t scaling: y(t):(Y(t)-—Y)/oy+Y.

Not all disturbances in the data can be tackled with FILTER.
For instance dynamic (and unKnown static) non-linearities in the
process or measurement errors like quantisation noise. To solve
these problems exXxperiment parameters have to be adapted or in-
stallation of improved equipment should be considered.

§ 5.3 A Protocol for Trend Filter Determination

The disturbances signal w(t) may be written as:

(5.3.1)  w(t) = wy(t) + wa(t) + w3(t) + wy(t)

with

wy(t) : stationary stochastic noise with zero mean,

wp(t) : low frequency noise; slow signal drifts
(trends),

w3(t) ¢ outliers; spikes; signal distortions,

missing data pieces,
wy(t) : other disturbances 1liKe process non-linea-
rities that do not fit in the linear process
output x(t).

The Dbias in the Least Squares estimation of the process parame-
ters {A;B] due to the trends wp(t) (see appendix i), can be
used to establish the proper specification of a trend filter.
With a protocol descridbed below the cut-off frequency Fc for a
high-pass trend filter with a given transition bandwidth, can be
determined.

The ©protocol 1is based on the behaviour of process models
estimated with an ordinary Least Squares method on the filtered
process data.
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First the measured process data is filtered with a number (n) of
high-pass filters with cut-off frequencies Fi-ixAf for
iz[O,n] such that with Fn the data is certainly detrended.

Then a model i: {?&;ﬁ}l is estimated for each filtered
data sequence {u;Ylgj.

wWith these models simulation 1is performed on a fully detrended
data sequence e.g. {u;yi?, filtered with cut-off frequency
Fn.

By studying the simulated output residuals AF(t) as
function of the cut-off frequencies Fi of the high-pass filters
used the proper trend filter c¢an be determined:

with the linear process output x(t) and the simulated output
¥(t) the output residuals dy(t) are computed as follows, using
the process description as mentioned in chapter 2:

(5.3.2) 8: y(t) X(t) + w(t) with
(A~1.B)* u(t) and

A-1. B u(t)

(5. 3. 3) x(t)

(5. 3. 4) ¥(t)

the simulated output residuals are:

(5.3.5) A¥(t) = y(t) - ¥(t) =
[ (A-1.B)* - -1, 8 ].u(t) + W(t)

As can Dbe seen from equatic‘{n 535 two terms attribute to the
output error residual Ay(t), namely:

-1{. a term resulting from the bias in the estimation of the pro-
cess parameters {A;B}] and
-2. the residuals term w(t) of the process description S.

The first term can be studied seperately Dby simulation with
(biased) models on a fully detrended data sequence.

In these simulations the input vector u(t), the residuals vector
w(t) and the "true" process modell estimation {A%;B*]
(on the data without trends) do not change.

The output error residuals Afrl(t) from model 1i:
{A;B1l1 simulated on a fully detrended data sequence
(u;Ylpp (filtered with cut-off frequency Fn) are:

A

(5.3.6) A¥L(t) = ypp(t) - #lpp(t) =

[A-ic B*Fn - A_i. QiFl ]aUFn(t) +

wrn (1)

1. If the high-pass filter frequencies are taken too high
the "true" parameters {A¥B¥] may change.
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Using this method the second term Wnr(t) in the simulations
is constant. Only differences in the estimated model parameters
caufeia variation in the output error residuals term
A ¥ « t ) .

The estimated parameters will be unbiased with respect to the
trends in the process outputs if these trends are eliminated from
the signals. As a result the simulated output residuals will
remain constant. From a plot of the simulated output residuals of
model {A;B}l as function of Fi on the data sequence
{u;Ylpn the {requency of the proper trend filter to be wused
Fc (Hz) can be determined.

A protocol with all the aspects of importance for application of
the scheme described above 1s given in figure 5.2.

The protocol starts with decimation of the process data and
selection of an input-output relation. Essential in the protocol
is the success of the LS parameter estimation, meaning that a LS
estimation {A;B}j°® must have a relative simulation output
error on the unfiltered sequence {u;yIFO of at 1least 1less
than 100 7. Before f{filtering and successive parameter estimation
can be performed adaption of the model order, time delay correc-
tion, decimation factor or input-output selection may be neces-
sary.

Generally the model order {nA;nB] to use has to be chosen high
enough to prohibit side effects from this choice. The procedure
is found to be not working properly 1f the latter is not taken
high enough!

A simple rule is : take the order of the A and B polynomials
{nA;nB} equal to the order as follows from an equation-error test
(with the application ORDERTEST) and add a few orders.

The protocol has been applied to the measured data of the {feeder

and the hydraulic-thermic process.
The process signals of the feeder, figure 5.4, are heavily cor-

rupted by trends.
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Figure 5.1 Measured output signals in the second section of the
feeder, FDSP_FM! and FDSP_FLI1

2, The application MODELTST is used to calculate the
simulation output residuals : vari{dy(t)i/variy(t).
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We start with raw measured process data sampled with sample time
To : {LYLT,

{U;Yiraw; Ty

- Signal repair
- Filtering of outliers
- Static non-~linearities corrected

I

{U; Yirepaired; Tq

}

START

1) - Visual inspection data; trends?
- Estimate frequency range possible trends

2} - Select Input-Output Relation <
- Decimate measured process data 1

]

{U; Y} T=2gec*To

-~

3] - Off-set value correction
u(t)=U(t)-Uy; ¥(t)=Y(t)-T,
~ Time delay Tq estimation & correction a

fu; ¥); Ttq

4] - Model structure selection nA;nB ¢
nA;nB high enough!
- LS estimation on data range [ni;n2)

!

tk; 810

] - Simulation with model {4;81° on [ni;n2)

Estimation N
successful? ’

Figure 5.2.a A protocol for the determination of the proper
trend filter, phase 1: input-output selection, deci-
mation and model order determination for LS estima-
tor.
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Estimation
successful?

YES

6] - Filter process signals {u;y} with a high-pass filter
with cut-off frequency Fi = ixAf (Hz) for i € [O;n]
n chosen ( based on 1] ) such that the data sequence
{u;Ylpn 1s fully detrended (visually).
Two possibilities:
-1, FIR filter (with Af free, remind filter startup) or
-2. FFT/RFT (with Af = K#1/(2ToN) K=4,2,.).

I

{u;ylp; 1€[0;n]

l

7] - LS estimation on each filtered data sequence
data range [ni;n2] with model order nA;nB

I

{i;811 for 1-0..n

l

8] - Simulate with the model {4;8}j1 for 1:0..n
on the (fully detrended) filtered data sequence
{u;Ylpp ¢ Simulated output residual A¥l(t)

var{ayl(t)}
var{ypn(t)l}

9] - Plot the simulated output residuals as a fuction of Fi.
The cut-off frequency Fc for the proper trend
filter to apply to the data sequence {U;Y};Ty
can be determined from this picture.
(Remind the transition bandwidth of the filters used in
this routine!)

y

STOP
Figure 5.2.b A protocol for the determination of the proper
trend filter, Phase 2: filtering, model estimation

and simulation.
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After decimation of the feeder data with a factor 10 the protocol
is applied to the temperatures FDSP_FMi and FDSP_FL{ (MIMO esti-
mation).

The model order used is nA=6;nB=6. All available samples (1100)
are used. High pass filtering is performed with FIR filters using
a HAMMING window function with minimum transition bandwidth
8.3E-4 HZz). For proper startup of the FIR filters 100 samples at
the beginning and at the end are taken. 8 filters are used with
cut-off frequencies : Fi = i.Af with Af-2.0E-4 Hz and
i=z[0,T7].

The biasedness of the LS estimator due to the trends in the
measured data can be observed if we looK at the estimated models.
In figure 5.3 the simulated impulse responses of the estimated
models are given. The tail of the impulse responses varies with
the trend filter used up to a certain frequency.

XFLLTFO arFL1iTrFR VPLATF4 +FLLTPS

0.00
-0.02 i
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XFMLTF4 LFMITFE vFNLTPFS +PNATIF40
OFM1TF42 .
i
|
0.04 :
i
0.02
0.00 P e ——
et
nd -______—-_——‘
L“
-0.02 L
-
0 20 40 80 80
RECORD_

Figure 5.3 Simulated impulse reponses for the feeder temperatures
FDSP_FL1 and FDSP_FMi with the estimated models {A;B}L
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The result from the protocol is given in figure 5.4,

The cut-off frequency of a proper treni filter for the tempera-
ture FDSP_FLi1 is found to be 4.0E-4 Hz for the FIR filter used.
For the temperature FDSP_FMi a cut-off frequency of 8.0E-4 Hz is
found. Dependent on the variables used in an estimation the
highest cut-off frequency has to be selected.

In successive trend filtering of the raw measured data using the
result of the protocol the finite transition bandwidth of a

filter has to be remembered.
1.8

1.7 4

100)

1.8

1.8 4

1.4 4

1.9

Output orror (Stat.
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Output error (Stat. 100)
]
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1
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0 1 3 3 . s 6 7
o var -mb-rm{-(l-)l
Figure 5.4 Result from the trend filter determination protocol

for the feeder temperatures FDSP_FLi1 and FDSP_FM1i.
Af:=-2.0E-4 Hz. Transition bandwidth FIR (HAMMING)
filters = 8.3E-4 Hz.

If we study the trend filtered from the feeder signals, figure
5.5 we observe two terms: a very low-frequency term originating
possibly from the furnace and a second term with a period of
about 24 hours. In the feeder temperature FDSP_FMi this day-night
rithm can be seen.
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o mooo 4000 ®so000 socco ‘s0000
Figure 55 Trends filtered from the feeder temperatures FDSP_FLI{
and FDSP_FM! with a FIR filter with minimum transi-
tion bandwidth 8.3E-4 Hz and cut-off frequency 8.0E-4
Hz

The protocol has also successfully been applied to other feeder
temperatures. In application to simulation data, disturbed on
purpose with trends, the exact cut-off frequency (remember the
finite transition bandwidth of the FIR filter) for {filtering of
the trends resulted.

If we study the output signals, figure 5.6, from the second
vessel ,T4 and Hy, in the thermal-hydraulical process we
can see a "dip" in the middle of the signals. This might be a
trend signal. In application of the protocol however no trends
are discovered. The simulated output residuals on a fully "detre-
nded® data sequence stay almost constant as function of the
filter cut-off frequency. Model estimations on the "trend" £fil-
tered process data in fact generally had a worse simulation
behaviour. If we study the *"trend" f{filtered inputs, Q and Qg,
the same "dip" can be seen in signal Q. This means that the "dip"
in the output signals can be explained from a low frequency
component in the input signals.

Xve
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®.00 J
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Figure 5.6.a Measured output signals at the second vessel of the

thermal-hydraulical process
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-9 . .8 J
Figure 5.6.b "Trends" filtered from the inputs Q and Qg of

the hydraulic-thermic process

§ 5.4 Influence of Data Conditioning on Process
Identificati

In this paragraph some aspects of data conditioning on the raw
measurement data from the feeder process are discussed. In analy-
sis of the feeder data first a thorough visual inspection is
performed. Several disturbances in the inputs COOL_AIR and F2_GAS
exist. If we lookK at the different signals from the feeder trends
are apparent. These trends mainly originate from the oven where
large disturbances in the energy input are visible, see figure
5.7.

xSMEL_Pit ASMEL_MOT GASTOT_T +INPuT
OAIRTOTAL

1 T - T
0 ~ 2000 4000 6000 8000

Figure 5.7 Signals from the glas-oven causing trends in the
feeder temperatures



DATA CONDITIONING IN PROCESS IDENTIFICATION Page 5,17

Apart from the the improved simulation result of a model on
conditioned data the estimated model of the process dynamics is
better. Due to the high energy content of the disturbances in the
raw data a parameter estimator tries to incorporate these effects
into the model. This can be seen clearly if we lookK at, figure
5.8. Poles with very large time constants occur in the model if
the trends in the data are not filtered. In figure 5.8 the im-
pulse responses of the estimation (with MARKOV), presents the
spout temperature FDSP_Fb1. Estimation has been performed on the
'raw" data and on the fully filtered data. On the "raw" data
offset value correction and sample reduction with a factor 10 is
performed. On the fully filtered data sequence the input signal
disturbances are repaired and trend filtered with a FIR (Hamming
window) filter of maximum size with cut-off frequency 8.0E-4 Hz
and transition bandwidth 8.3E-4 Hz. The simulation output resi-
duals are calculated with MODELTST.
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0 T a0 P™ %00

TINE_ oac.
Figure 5.8.a Estimation result of MARKOV (response length=-=65, 912
samples) of FDSP_F54 on the "raw" data: reduction
factor 10, offset values corrected.
Sim. error N/S = 39.38%. on the data range [91,912].
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Figure 5.8.b Estimation result of MARKOV (response length:=65, 912
samples) of FDSP_F51 on the filtered data: distur-
bances repaired, trend filtered : FIR filter,

Hamming window, F¢:=8.0E-4 Hz and minimum transition
bandwidth, reduction factor 10.
Sim., error N/S = {1.43 7 on [91,912].

Not only the parameter estimation on the raw data is influenced
by the trends but also the accuracy (estimation!) is worse. If we
study the estimates of the parameter accuracy of the markov
impulse response estimates from the input F2_GAS to the feeder
temperature FDSP_F5i on the "raw" and the filtered data, figure
59 clearly the parameter estimation accuracy 1is less for the
"raw" data.
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1. "raw" data 2. filtered data
Figure 5.9 Estimation result of MARKOV (response length 65, 912

samples) from input F2_GAS to FDSP_F51 on the
"raw" 1. and the filtered 2. data.

Numerical conditioning of the estimation problem and the con-
verge of the estimate of the covariance matrix P influence the
accuracy of the parameter estimation.

It is found that the direct impulse response estimates with
MARKOV on the filtered data suffer less from oscillations (with
w = wg/2 (nyquist frequency)) in the ©parameters than
the estimates on the "raw" data. Probably the Dbetter numerical
conditioning of the parameter estimation on the filtered data is
responsible for this. The results from the equation error order-
test are found to be influenced by disturbances in data. In using
the recursive application Guidorzi sometimes unstable models
resulted after encountering an outlier in the data,
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§ 5.5 Congclusions

Disturbances in measured process data have influence on the
performance and result from identification methods. Since the
rarameter estimator tries to incorporate trends and outliers with
high energy content in the model.

Most disturbances in measured process data can be taken care of
with the application FILTER. The usage of FILTER for the
different operations is straightforward. Only the determination
of the trend filter to use 1is a problem if the spectral band of
the trends is close to the process band. A sharp filter has to be
used to be certain that all trends are filtered, but as little as
possible information of the process is removed from the
measurement data.

A protocol is developed to solve this problem. The least squares
estimator to use in the protocol has to Dbe successful. On the
process data sequences studied the protocol is found to be wor-

King properly.
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Chapter 6. CONCLUSIONS

This report discusses interactive modelling of the dynamical
behaviour of practical processes. Attention is focused on the
experiment design and conditioning of the raw measured process
data. A protocol has been developed which proves to be working
properly for the process studied.

Furthermore, conditioning the raw data proved to be of Key
importance for the success of the identification methods. For
this purpose the PRIMAL package has been extended with a new
application (FILTER) which offers the most important operations
for data conditioning.

A first study is performed with respect to the different aspects
of experiment design in process 1identification. Especially expe-
riments performed in the pre-measurements phase are found to be
inefficient. The amount of time spent in this phase however 1is
large. It is suggested that the design of experiments deserves
additional attention in the PRIMAL project.

The application of PRIMAL 1in identification of a practical pro-
cess proved to be powerful with respect to the interactive and
on-line features of the package. Especially the on-line visual
monitoring of process signals & results of the analyses proves to
be very useful in all the stages of an identification project,

PRIMAL offers many 1tools for analysis of process data. This
allows the user to search for the best possible method for a
particular problem. It 1s therefore possible to generate (a

picture of) the obtainable results an a short time. A drawbacK is
that in this approach an ofter enormous amount of data is
generated and the user may loose the overvieuw of his actions.
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APPENDIX 1.Least Squares Parameter Estimation(IVM-LS)

The process S that generates the data may be described by a
determinstic (model) part and a disturbances part:

(AL.1) St y(t) = x(t) + w(t) with

y(t) the measured output vector at time instant t,
X(t) the linear system output vector and
w(t) the output disturbances vector.

The deterministic part can be described by a transfer function
matrix :

(AL1.2) X(t) = G(ga~1).u(t) with

q-1 is the back shift operator: q~-! u(t):=u(t-1)
u(t) the measured input vector at time instant t.

The disturbances vector contains all the output signal disturban-
ces which c¢an not be described by the transfer function matrix
G(g-}). It is assumed that these disturbances are not corre-
lated with the input signals.

In practical process data the disturbances vector w(t) not only
contains stationary stochastic noise with 2zero mean but all Kinds
of disturbances occur (see chapter b5.3).

The LS estimator used by the application IVM-LS estimates the
parameters of the model using a Matrix Fraction Description (MFD)
to descridbe the relation between the inputs and the outputs.
(Sé6derstrom /15/)

(AL .4) M: A(q’i,e).Y(t) = B(q'i,e).u(t) + v(t,0) with
e : a n6-dimensional vector of unkKnown parameters compounded
of the elements from A(q-1,8) and B(q-1,0).
v{t,8): the model (equation) error at time instant t.
A(g=1,09):I+q- 1A (1) (8)+...+gq NAA(NA) (@)

Autoregressive part of the system model
nA : order of the polynomial A(gq~1,9) and

B(q'1 ,e):B(O) (e).,,q-iB(1)f(9)+.+q-nBB(nB)(e)

Moving average part of the system model
nB : order of the polynomial B(g~!,0)
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With the matrix coefficiénts {al(e);Bl(e )3 linear
functions of © the model can also be written as a regression
equation:
(AL.5) M: y(t) = ¢T(t).e + v(t,8) with

$(t) a data matrix containing the delayed output

and input samples.

Assumption: there exists an unique vector 6* such
that

(A1.6) A(q-l,e*)-l.B(q 1,0%) = a(q1).

Thus the process can be rewritten as:
(AL.7) M: y(t) = ¢T(t).0% + v(t,0e") with
(A1.8) v(t) = A(g 1, e%)w(t)

The structure of the parameter vector © and the data matrix
$(t) used in the application 1is described in Berben /i2/.

The model parameters are estimated using a quadratic criterion
function on the equation error v(t,8) with respect to the para-
meter vector 6:

with N observations for u(t) and y(t) available:

N
(AL1.9) v(e) = (1/N). ¢ vI(t,e)v(t,8)
t=1

With prespect to © the minimizing element is taken as the estimate
8 which follows from oavV(®)/é6 = 0. It is given Dby, using
equation Al.6:

(Al. 10)

N -1 N
8:0% + [1/1\1.8 ¢(t)¢T(t)] . [1/N.E da(t)v(t)]
t=1 t=1

L ']
)

bias

3
(P2

Due to these signal disturbances the parameter estimation will be
biased if the equation error v(t) (equal to A*w(t)) 1is corre-
lated to the measured output signal y(t)
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APPENDIX 2. The Application Filter:

Text data set example

flctesei Title : FILTER
Crection Dote/Time! 2300187 145738138
IoLaunl Yire H Yu  rucurds
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---------- B A A e e il
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Samrle Freauency : 1.000 [H«]
STEF l--=-lLs Saluoubionemmmm s e e e e e e e e e e e e s m e e oo
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Humirer off Sameles H 300 Sieri Sawrle : 101
STEF 2----Deloy Curreclign~mmremmoo oo e e e e e m e mc o oo o
Sew table.
STEF 3----Sidnecl Repglp———===m—-s-s oo oo e e e e e e e oo
Nu Sidnal Rerielr
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v U 101 200
27y 101 900
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Sheving Strengih : 1,500
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STEP S5----RHoun-Linesr Correcliop==-==ss--osro—rooomem e ce e e m oo mm o o oo
Nu Mon-Linear Correcilon
STEF é----Trend Correction & Molse Reduclion---=-==--=-=--cooooommosomomoneoonon -
Filter Coefficientst
Filter-Filiey---- Window----ti)ler-—--- { vwer s Wyrper —-———
Numper Class Funciiun  Yure Cub=-0ii Freauencs(Hs)
i FIR HAMKING HIGHFASS  Q.2000F-0Z --

==Filtar=-=Tronsition--=--Filier-
Numsber Boenduwidiii(H:) Sice
13 0,u000K-01 33

flecord Siunpel rert Filicred oi'itl F
‘

Start~ur with 2ddiitloncl deie T
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Ttates Reduwed bon Facior s 1

Gceling ' F
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