24,677 research outputs found

    Characterization and computation of canonical tight windows for Gabor frames

    Full text link
    Let (gnm)n,mZ(g_{nm})_{n,m\in Z} be a Gabor frame for L2(R)L_2(R) for given window gg. We show that the window h0=S1/2gh^0=S^{-1/2} g that generates the canonically associated tight Gabor frame minimizes gh\|g-h\| among all windows hh generating a normalized tight Gabor frame. We present and prove versions of this result in the time domain, the frequency domain, the time-frequency domain, and the Zak transform domain, where in each domain the canonical h0h^0 is expressed using functional calculus for Gabor frame operators. Furthermore, we derive a Wiener-Levy type theorem for rationally oversampled Gabor frames. Finally, a Newton-type method for a fast numerical calculation of \ho is presented. We analyze the convergence behavior of this method and demonstrate the efficiency of the proposed algorithm by some numerical examples

    On Lerch's transcendent and the Gaussian random walk

    Get PDF
    Let X1,X2,...X_1,X_2,... be independent variables, each having a normal distribution with negative mean β<0-\beta<0 and variance 1. We consider the partial sums Sn=X1+...+XnS_n=X_1+...+X_n, with S0=0S_0=0, and refer to the process {Sn:n0}\{S_n:n\geq0\} as the Gaussian random walk. We present explicit expressions for the mean and variance of the maximum M=max{Sn:n0}.M=\max\{S_n:n\geq0\}. These expressions are in terms of Taylor series about β=0\beta=0 with coefficients that involve the Riemann zeta function. Our results extend Kingman's first-order approximation [Proc. Symp. on Congestion Theory (1965) 137--169] of the mean for β0\beta\downarrow0. We build upon the work of Chang and Peres [Ann. Probab. 25 (1997) 787--802], and use Bateman's formulas on Lerch's transcendent and Euler--Maclaurin summation as key ingredients.Comment: Published at http://dx.doi.org/10.1214/105051606000000781 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Tearing Out the Income Tax by the (Grass)Roots

    Get PDF
    Landscapes are increasingly fragmented, and conservation programs have started to look at network approaches for maintaining populations at a larger scale. We present an agent-based model of predator–prey dynamics where the agents (i.e. the individuals of either the predator or prey population) are able to move between different patches in a landscaped network. We then analyze population level and coexistence probability given node-centrality measures that characterize specific patches. We show that both predator and prey species benefit from living in globally well-connected patches (i.e. with high closeness centrality). However, the maximum number of prey species is reached, on average, at lower closeness centrality levels than for predator species. Hence, prey species benefit from constraints imposed on species movement in fragmented landscapes since they can reproduce with a lesser risk of predation, and their need for using anti-predatory strategies decreases.authorCount :

    Performance of Hybrid NbTiN-Al Microwave Kinetic Inductance Detectors as Direct Detectors for Sub-millimeter Astronomy

    Full text link
    In the next decades millimeter and sub-mm astronomy requires large format imaging arrays and broad-band spectrometers to complement the high spatial and spectral resolution of the Atacama Large Millimeter/sub-millimeter Array. The desired sensors for these instruments should have a background limited sensitivity and a high optical efficiency and enable arrays thousands of pixels in size. Hybrid microwave kinetic inductance detectors consisting of NbTiN and Al have shown to satisfy these requirements. We present the second generation hybrid NbTiN-Al MKIDs, which are photon noise limited in both phase and amplitude readout for loading levels P850GHz10P_{850GHz} \geq 10 fW. Thanks to the increased responsivity, the photon noise level achieved in phase allows us to simultaneously read out approximately 8000 pixels using state-of-the-art electronics. In addition, the choice of superconducting materials and the use of a Si lens in combination with a planar antenna gives these resonators the flexibility to operate within the frequency range 0.09<ν<1.10.09 < \nu < 1.1 THz. Given these specifications, hybrid NbTiN-Al MKIDs will enable astronomically usable kilopixel arrays for sub-mm imaging and moderate resolution spectroscopy.Comment: 7 pages, 3 figures. Presented at SPIE Astronomical Telescopes and Instrumentation 2014: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI

    Photon noise limited radiation detection with lens-antenna coupled Microwave Kinetic Inductance Detectors

    Get PDF
    Microwave Kinetic Inductance Detectors (MKIDs) have shown great potential for sub-mm instrumentation because of the high scalability of the technology. Here we demonstrate for the first time in the sub-mm band (0.1...2 mm) a photon noise limited performance of a small antenna coupled MKID detector array and we describe the relation between photon noise and MKID intrinsic generation-recombination noise. Additionally we use the observed photon noise to measure the optical efficiency of detectors to be 0.8+-0.2.Comment: The following article has been submitted to AP
    corecore