21 research outputs found

    Screening of a library of recombinant Schistosoma mansoni proteins with sera from murine and human controlled infections identifies early serological markers.

    Get PDF
    Schistosomiasis is a major global health problem caused by blood-dwelling parasitic worms, which is currently tackled primarily by mass administration of the drug praziquantel. Appropriate drug treatment strategies are informed by diagnostics that establish the prevalence and intensity of infection, which, in regions of low transmission, should be highly sensitive. To identify sensitive new serological markers of Schistosoma mansoni infections, we have compiled a recombinant protein library of parasite cell-surface and secreted proteins expressed in mammalian cells. Together with a time series of sera samples from volunteers experimentally infected with a defined number of male parasites, we probed this protein library to identify several markers that can detect primary infections with as low as ten parasites and as early as five weeks post infection. These new markers could be further explored as valuable tools to detect ongoing and previous S. mansoni infections, including in endemic regions where transmission is low. © The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America

    New insights into the kinetics and variability of egg excretion in controlled human hookworm infections

    Get PDF
    Four healthy volunteers were infected with 50 Necator americanus infective larvae (L3) in a controlled human hookworm infection trial and followed for 52 weeks. The kinetics of fecal egg counts in volunteers was assessed with Bayesian multilevel analysis, which revealed an increase between weeks 7 and 13, followed by an egg density plateau of about 1000 eggs/g of feces. Variation in egg counts was minimal between same-day measurements but varied considerably between days, particularly during the plateau phase. These analyses pave the way for the controlled human hookworm model to accelerate drug and vaccine efficacy studies

    Antigen-based diagnosis of Schistosoma infection in travellers: a prospective study

    Get PDF
    BACKGROUND: Travellers infected with Schistosoma spp. might be pauci- or even asymptomatic on first presentation. Therefore, schistosomiasis may remain undiagnosed in this population. Active infection, as evidenced by the presence of the tissue-dwelling worm, can be demonstrated via the detection of adult worm-derived circulating anodic antigen (CAA) utilising a robust well-described lateral flow-(LF) based test applying background-free up-converting reporter particles (UCP). In this prospective study, we assessed the diagnostic value of serum and urine UCP-LF CAA test in comparison with two Schistosoma-specific serological assays detecting antibodies against adult worm antigen-immuno fluorescence assay (AWA-IFA) and against soluble egg antigen-enzyme-linked immunosorbent assay (SEA-ELISA) antigens in travellers. METHODS: Samples were collected from 106 Dutch travellers who reported freshwater contact in sub-Saharan Africa and who were recruited up to 2 years after return. Subjects were asked to complete a detailed questionnaire on travel history, water contact, signs and symptoms compatible with schistosomiasis. RESULTS: Two travellers were positive by serum CAA and an additional one by urine CAA. A total of 22/106 (21%) samples were antibody positive by AWA-IFA and 9/106 (9%) by SEA-ELISA. At follow-up 6 weeks and 6 months after praziquantel treatment, all seropositives remained antibody positive whereas CAA was cleared. Seropositivity could not be predicted by the type of fresh water-related activity, country visited or symptoms reported. CONCLUSION: The low number of UCP-LF CAA positives suggests that in travellers, active infections often do not establish or have very low worm burden. Based on our high seroconversion rates, we conclude that the AWA-IFA assay is the most sensitive test to detect schistosome exposure. Given the lack of predictive symptoms or risk factors, we recommend schistosomiasis screening at least by serology in all travellers with reported freshwater contact in high-endemic areas

    Plasmodium berghei sporozoites in nonreplicative vacuoles are eliminated by a PI3P-mediated autophagy-independent pathway.

    Get PDF
    The protozoan parasite Plasmodium, causative agent of malaria, invades hepatocytes by invaginating the host cell plasma membrane and forming a parasitophorous vacuole membrane (PVM). Surrounded by this PVM, the parasite undergoes extensive replication. Parasites inside a PVM provoke the Plasmodium-associated autophagy-related (PAAR) response. This is characterized by a long-lasting association of the autophagy marker protein LC3 with the PVM, which is not preceded by phosphatidylinositol 3-phosphate (PI3P)-labelling. Prior to productive invasion, sporozoites transmigrate several cells and here we describe that a proportion of traversing sporozoites become trapped in a transient traversal vacuole, provoking a host cell response that clearly differs from the PAAR response. These trapped sporozoites provoke PI3P-labelling of the surrounding vacuolar membrane immediately after cell entry, followed by transient LC3-labelling and elimination of the parasite by lysosomal acidification. Our data suggest that this PI3P response is not only restricted to sporozoites trapped during transmigration but also affects invaded parasites residing in a compromised vacuole. Thus, host cells can employ a pathway distinct from the previously described PAAR response to efficiently recognize and eliminate Plasmodium parasites. This article is protected by copyright. All rights reserved

    Urinary Metabolic Profiling in Volunteers Undergoing Malaria Challenge in Gabon

    No full text
    The interaction of malaria parasites with their human host is extensively studied, yet only few studies reported how P. falciparum infection affects urinary metabolite profiles and how this is associated with immunity. We present a longitudinal study of the urinary metabolic profiles of twenty healthy Africans with lifelong exposure to malaria and five malaria-naïve Europeans, who were all challenged with direct venous inoculation of live P. falciparum sporozoïtes (PfSPZ) and followed up until they developed symptoms or became thick blood smear positive (TBS). Urine samples were collected before and at 2, 5, 9 and 11 days post challenge and were analysed. Upon infection, all Europeans became TBS positive, while Africans showed either a delay in time to parasitaemia or controlled infection. Our metabolic data showed that Europeans and Africans had distinct alterations in metabolite patterns, with changes mostly seen on days 5 and 9 post PfSPZ infection, and more prominently in Europeans. Within the African group, the levels of formate, urea, trimethylamine, threonine, choline, myo-inositol and acetate were significantly higher in TBS positive whereas the levels of pyruvate, 3-methylhistidine and dimethylglycine were significantly lower in individuals who remained TBS negative. Notably, before inoculation with PfSPZ, a group of metabolites including phenylacetylglutamine can potentially be used to predict parasitaemia control among Africans. Taken together, this study highlights the difference in urinary metabolic changes in response to malaria infection as a consequence of lifelong exposure to malaria and that change detectable before challenge might predict the control of parasitaemia in malaria-endemic areas

    Long-term live imaging reveals cytosolic immune responses of host hepatocytes against Plasmodium infection and parasite escape mechanisms

    Get PDF
    Plasmodium parasites are transmitted by Anopheles mosquitoes to the mammalian host and actively infect hepatocytes after passive transport in the bloodstream to the liver. In their target host hepatocyte, parasites reside within a parasitophorous vacuole (PV). In the present study it was shown that the parasitophorous vacuole membrane (PVM) can be targeted by autophagy marker proteins LC3, ubiquitin, and SQSTM1/p62 as well as by lysosomes in a process resembling selective autophagy. The dynamics of autophagy marker proteins in individual Plasmodium berghei-infected hepatocytes were followed by live imaging throughout the entire development of the parasite in the liver. Although the host cell very efficiently recognized the invading parasite in its vacuole, the majority of parasites survived this initial attack. Successful parasite development correlated with the gradual loss of all analyzed autophagy marker proteins and associated lysosomes from the PVM. However, other autophagic events like nonselective canonical autophagy in the host cell continued. This was indicated as LC3, although not labeling the PVM anymore, still localized to autophagosomes in the infected host cell. It appears that growing parasites even benefit from this form of nonselective host cell autophagy as an additional source of nutrients, as in host cells deficient for autophagy, parasite growth was retarded and could partly be rescued by the supply of additional amino acid in the medium. Importantly, mouse infections with P. berghei sporozoites confirmed LC3 dynamics, the positive effect of autophagy activation on parasite growth, and negative effects upon autophagy inhibition

    Antigen-based diagnosis of Schistosoma infection in travellers: a prospective study

    No full text
    BACKGROUND: Travellers infected with Schistosoma spp. might be pauci- or even asymptomatic on first presentation. Therefore, schistosomiasis may remain undiagnosed in this population. Active infection, as evidenced by the presence of the tissue-dwelling worm, can be demonstrated via the detection of adult worm-derived circulating anodic antigen (CAA) utilising a robust well-described lateral flow-(LF) based test applying background-free up-converting reporter particles (UCP). In this prospective study, we assessed the diagnostic value of serum and urine UCP-LF CAA test in comparison with two Schistosoma-specific serological assays detecting antibodies against adult worm antigen-immuno fluorescence assay (AWA-IFA) and against soluble egg antigen-enzyme-linked immunosorbent assay (SEA-ELISA) antigens in travellers. METHODS: Samples were collected from 106 Dutch travellers who reported freshwater contact in sub-Saharan Africa and who were recruited up to 2 years after return. Subjects were asked to complete a detailed questionnaire on travel history, water contact, signs and symptoms compatible with schistosomiasis. RESULTS: Two travellers were positive by serum CAA and an additional one by urine CAA. A total of 22/106 (21%) samples were antibody positive by AWA-IFA and 9/106 (9%) by SEA-ELISA. At follow-up 6 weeks and 6 months after praziquantel treatment, all seropositives remained antibody positive whereas CAA was cleared. Seropositivity could not be predicted by the type of fresh water-related activity, country visited or symptoms reported. CONCLUSION: The low number of UCP-LF CAA positives suggests that in travellers, active infections often do not establish or have very low worm burden. Based on our high seroconversion rates, we conclude that the AWA-IFA assay is the most sensitive test to detect schistosome exposure. Given the lack of predictive symptoms or risk factors, we recommend schistosomiasis screening at least by serology in all travellers with reported freshwater contact in high-endemic areas

    CD4<sup>+</sup>CD25<sup>hi</sup>FOXP3<sup>+</sup> Regulatory T Cells and Cytokine Responses in Human Schistosomiasis before and after Treatment with Praziquantel

    No full text
    <div><p>Background</p><p>Chronic schistosomiasis is associated with T cell hypo-responsiveness and immunoregulatory mechanisms, including induction of regulatory T cells (Tregs). However, little is known about Treg functional capacity during human <i>Schistosoma haematobium</i> infection.</p><p>Methodology</p><p>CD4<sup>+</sup>CD25<sup>hi</sup>FOXP3<sup>+</sup> cells were characterized by flow cytometry and their function assessed by analysing total and Treg-depleted PBMC responses to schistosomal adult worm antigen (AWA), soluable egg antigen (SEA) and Bacillus Calmette-Guérin (BCG) in <i>S</i>. <i>haematobium</i>-infected Gabonese children before and 6 weeks after anthelmintic treatment. Cytokines responses (IFN-γ, IL-5, IL-10, IL-13, IL-17 and TNF) were integrated using Principal Component Analysis (PCA). Proliferation was measured by CFSE.</p><p>Principal Findings</p><p><i>S</i>. <i>haematobium</i> infection was associated with increased Treg frequencies, which decreased post-treatment. Cytokine responses clustered into two principal components reflecting regulatory and Th2-polarized (PC1) and pro-inflammatory and Th1-polarized (PC2) cytokine responses; both components increased post-treatment. Treg depletion resulted in increased PC1 and PC2 at both time-points. Proliferation on the other hand, showed no significant difference from pre- to post-treatment. Treg depletion resulted mostly in increased proliferative responses at the pre-treatment time-point only.</p><p>Conclusions</p><p><i>Schistosoma</i>-associated CD4<sup>+</sup>CD25<sup>hi</sup>FOXP3<sup>+</sup>Tregs exert a suppressive effect on both proliferation and cytokine production. Although Treg frequency decreases after praziquantel treatment, their suppressive capacity remains unaltered when considering cytokine production whereas their influence on proliferation weakens with treatment.</p></div
    corecore