13 research outputs found

    Predictive Model for the Electrical Transport within Nanowire Networks

    No full text
    Thin networks of high aspect ratio conductive nanowires can combine high electrical conductivity with excellent optical transparency, which has led to a widespread use of nanowires in transparent electrodes, transistors, sensors, and flexible and stretchable conductors. Although the material and application aspects of conductive nanowire films have been thoroughly explored, there is still no model which can relate fundamental physical quantities, like wire resistance, contact resistance, and nanowire density, to the sheet resistance of the film. Here, we derive an analytical model for the electrical conduction within nanowire networks based on an analysis of the parallel resistor network. The model captures the transport characteristics and fits a wide range of experimental data, allowing for the determination of physical parameters and performance-limiting factors, in sharp contrast to the commonly employed percolation theory. The model thus constitutes a useful tool with predictive power for the evaluation and optimization of nanowire networks in various applications.Funding Agencies|ETH Zurich; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO Mat LiU) [2009 00971]; Swedish Foundation for Strategic Research</p

    Switching transport through nanopores with pH-responsive polymer brushes for controlled ion permeability

    No full text
    The development of a biosensor for high throughput screening of membrane proteins is a major challenge in drug development. Our aim is to chemically functionalize supported nanoporous films and nanosieves, so that they can be used as platforms for membrane protein assays. For this we use pH-responsive poly(methacrylic acid) (PMAA) brushes

    High-Resolution Resistless Nanopatterning on Polymer and Flexible Substrates for Plasmonic Biosensing Using Stencil Masks

    No full text
    The development of nanoscale lithographic methods on polymer materials is a key requirement to improve the spatial resolution and performance of flexible devices. Here, we report the fabrication of metallic nanostructures down to 20 and 50 nm in size on polymer materials such as polyimide, parylene, SU-8, and PDMS substrates without any resist processing using stencil lithography. Metallic nanodot array analysis of their localized surface plasmon spectra is included. We demonstrate plasmon resonance detection of biotin and streptavidin using a PDMS flexible film with gold nanodots. We also demonstrate the fabrication of metallic nanowires on polyimide substrates with their electrical characteristics showing an ohmic behavior. These results demonstrate high-resolution nanopatterning and device nanofabrication capability of stencil lithography on polymer and flexible substrates

    High-Resolution Resistless Nanopatterning on Polymer and Flexible Substrates for Plasmonic Biosensing Using Stencil Masks

    No full text
    The development of nanoscale lithographic methods on polymer materials is a key requirement to improve the spatial resolution and performance of flexible devices. Here, we report the fabrication of metallic nanostructures down to 20 and 50 nm in size on polymer materials such as polyimide, parylene, SU-8, and PDMS substrates without any resist processing using stencil lithography. Metallic nanodot array analysis of their localized surface plasmon spectra is included. We demonstrate plasmon resonance detection of biotin and streptavidin using a PDMS flexible film with gold nanodots. We also demonstrate the fabrication of metallic nanowires on polyimide substrates with their electrical characteristics showing an ohmic behavior. These results demonstrate high-resolution nanopatterning and device nanofabrication capability of stencil lithography on polymer and flexible substrates
    corecore