36 research outputs found

    Transient Receptor Potential Channel Polymorphisms Are Associated with the Somatosensory Function in Neuropathic Pain Patients

    Get PDF
    Transient receptor potential channels are important mediators of thermal and mechanical stimuli and play an important role in neuropathic pain. The contribution of hereditary variants in the genes of transient receptor potential channels to neuropathic pain is unknown. We investigated the frequency of transient receptor potential ankyrin 1, transient receptor potential melastin 8 and transient receptor potential vanilloid 1 single nucleotide polymorphisms and their impact on somatosensory abnormalities in neuropathic pain patients. Within the German Research Network on Neuropathic Pain (Deutscher Forscbungsverbund Neuropathischer Schmerz) 371 neuropathic pain patients were phenotypically characterized using standardized quantitative sensory testing. Pyrosequencing was employed to determine a total of eleven single nucleotide polymorphisms in transient receptor potential channel genes of the neuropathic pain patients and a cohort of 253 German healthy volunteers. Associations of quantitative sensory testing parameters and single nucleotide polymorphisms between and within groups and subgroups, based on sensory phenotypes, were analyzed. Single nucleotide polymorphisms frequencies did not differ between both the cohorts. However, in neuropathic pain patients transient receptor potential ankyrin 1 710G>A (rs920829, E179K) was associated with the presence of paradoxical heat sensation (p = 0.03), and transient receptor potential vanilloid 1 1911A>G (rs8065080, I585V) with cold hypoalgesia (p = 0.0035). Two main subgroups characterized by preserved (1) and impaired (2) sensory function were identified. In subgroup 1 transient receptor potential vanilloid 1 1911A>G led to significantly less heat hyperalgesia, pinprick hyperalgesia and mechanical hypaesthesia (p = 0.006, p = 0.005 and p<0.001) and transient receptor potential vanilloid 1 1103C>G (rs222747, M315I) to cold hypaesthesia (p = 0.002), but there was absence of associations in subgroup 2. In this study we found no evidence that genetic variants of transient receptor potential channels are involved in the expression of neuropathic pain, but transient receptor potential channel polymorphisms contributed significantly to the somatosensory abnormalities of neuropathic pain patients

    Motor, cognitive and mobility deficits in 1000 geriatric patients : protocol of a quantitative observational study before and after routine clinical geriatric treatment – the ComOn-study

    Get PDF
    © The Author(s). 2020 Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background: Motor and cognitive deficits and consequently mobility problems are common in geriatric patients. The currently available methods for diagnosis and for the evaluation of treatment in this vulnerable cohort are limited. The aims of the ComOn (COgnitive and Motor interactions in the Older populatioN) study are (i) to define quantitative markers with clinical relevance for motor and cognitive deficits, (ii) to investigate the interaction between both motor and cognitive deficits and (iii) to assess health status as well as treatment outcome of 1000 geriatric inpatients in hospitals of Kiel (Germany), Brescia (Italy), Porto (Portugal), Curitiba (Brazil) and Bochum (Germany). Methods: This is a prospective, explorative observational multi-center study. In addition to the comprehensive geriatric assessment, quantitative measures of reduced mobility and motor and cognitive deficits are performed before and after a two week's inpatient stay. Components of the assessment are mobile technology-based assessments of gait, balance and transfer performance, neuropsychological tests, frailty, sarcopenia, autonomic dysfunction and sensation, and questionnaires to assess behavioral deficits, activities of daily living, quality of life, fear of falling and dysphagia. Structural MRI and an unsupervised 24/7 home assessment of mobility are performed in a subgroup of participants. The study will also investigate the minimal clinically relevant change of the investigated parameters. Discussion: This study will help form a better understanding of symptoms and their complex interactions and treatment effects in a large geriatric cohort.info:eu-repo/semantics/publishedVersio

    Clinical autonomic nervous system laboratories in Europe: a joint survey of the European Academy of Neurology and the European Federation of Autonomic Societies

    Get PDF
    © 2022 The Authors. European Journal of Neurology published by John Wiley & Sons Ltd on behalf of European Academy of Neurology. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.Background and purpose: Disorders of the autonomic nervous system (ANS) are common conditions, but it is unclear whether access to ANS healthcare provision is homogeneous across European countries. The aim of this study was to identify neurology-driven or interdisciplinary clinical ANS laboratories in Europe, describe their characteristics and explore regional differences. Methods: We contacted the European national ANS and neurological societies, as well as members of our professional network, to identify clinical ANS laboratories in each country and invite them to answer a web-based survey. Results: We identified 84 laboratories in 22 countries and 46 (55%) answered the survey. All laboratories perform cardiovascular autonomic function tests, and 83% also perform sweat tests. Testing for catecholamines and autoantibodies are performed in 63% and 56% of laboratories, and epidermal nerve fiber density analysis in 63%. Each laboratory is staffed by a median of two consultants, one resident, one technician and one nurse. The median (interquartile range [IQR]) number of head-up tilt tests/laboratory/year is 105 (49-251). Reflex syncope and neurogenic orthostatic hypotension are the most frequently diagnosed cardiovascular ANS disorders. Thirty-five centers (76%) have an ANS outpatient clinic, with a median (IQR) of 200 (100-360) outpatient visits/year; 42 centers (91%) also offer inpatient care (median 20 [IQR 4-110] inpatient stays/year). Forty-one laboratories (89%) are involved in research activities. We observed a significant difference in the geographical distribution of ANS services among European regions: 11 out of 12 countries from North/West Europe have at least one ANS laboratory versus 11 out of 21 from South/East/Greater Europe (p = 0.021). Conclusions: This survey highlights disparities in the availability of healthcare services for people with ANS disorders across European countries, stressing the need for improved access to specialized care in South, East and Greater Europe.info:eu-repo/semantics/publishedVersio

    EFAS/EAN survey on the influence of the COVID-19 pandemic on European clinical autonomic education and research

    Get PDF
    © The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Purpose: To understand the influence of the coronavirus disease 2019 (COVID-19) pandemic on clinical autonomic education and research in Europe. Methods: We invited 84 European autonomic centers to complete an online survey, recorded the pre-pandemic-to-pandemic percentage of junior participants in the annual congresses of the European Federation of Autonomic Societies (EFAS) and European Academy of Neurology (EAN) and the pre-pandemic-to-pandemic number of PubMed publications on neurological disorders. Results: Forty-six centers answered the survey (55%). Twenty-nine centers were involved in clinical autonomic education and experienced pandemic-related didactic interruptions for 9 (5; 9) months. Ninety percent (n = 26/29) of autonomic educational centers reported a negative impact of the COVID-19 pandemic on education quality, and 93% (n = 27/29) established e-learning models. Both the 2020 joint EAN-EFAS virtual congress and the 2021 (virtual) and 2022 (hybrid) EFAS and EAN congresses marked higher percentages of junior participants than in 2019. Forty-one respondents (89%) were autonomic researchers, and 29 of them reported pandemic-related trial interruptions for 5 (2; 9) months. Since the pandemic begin, almost half of the respondents had less time for scientific writing. Likewise, the number of PubMed publications on autonomic topics showed the smallest increase compared with other neurological fields in 2020-2021 and the highest drop in 2022. Autonomic research centers that amended their trial protocols for telemedicine (38%, n = 16/41) maintained higher clinical caseloads during the first pandemic year. Conclusions: The COVID-19 pandemic had a substantial negative impact on European clinical autonomic education and research. At the same time, it promoted digitalization, favoring more equitable access to autonomic education and improved trial design.info:eu-repo/semantics/publishedVersio

    Spontaneous recurrent episodes of wrist pain in a 16-year-old girl: a case of complex regional pain syndrome

    No full text
    Abstract. Introduction: Complex regional pain syndromes (CRPS) are disabling pain syndromes that can develop after minor tissue injury or trauma and are characterized by sensory, motor, and autonomic abnormalities distributed in a glove-like or stocking-like manner. Complex regional pain syndrome is well known in adults, but is relatively rare in children. Most of the reported cases of CRPS in children are clinical diagnoses that are not supported by examinations such as three-phase bone scintigraphy. Furthermore, different centres often use different diagnostic criteria for CRPS, which sometimes questions the diagnosis of CRPS. Objective/Methods: Although, recurrences and in particular relapses of CRPS have been observed, a periodically, nearly self-limiting course of disease without any residues in pain-free episodes and without any new obvious injury in CRPS is rather unusual. We present the case of a 16-year-old girl who reported recurrent spontaneous pain which lasted for 2 to 3 weeks and occurred approximately 2 times a year after the patient had experienced a mild trauma 3 years ago. Results: The pain was accompanied by swelling, temperature asymmetry, and decreased range of motion of the right hand without any complains in pain-free episodes. Recurrent symptoms occurred without any obvious trauma. Diagnosis of CRPS was made from clinical findings including quantitative sensory testing, increased periarticular radioisotope uptake in the delayed phase of three-phase bone scintigraphy and examination during anaesthesia. Multimodal inpatient pain treatment resolved her symptoms substantially. Conclusion: Complex regional pain syndrome in children may imitate rheumatologic diseases, and the course is different from adults despite similar clinical findings

    Dynamic of the somatosensory system in postherpetic neuralgia

    No full text
    Abstract. Introduction:. In postherpetic neuralgia (PHN) different types of patients can be distinguished regarding their predominant peripheral nociceptor function. Objective:. The aim was to examine somatosensory profiles in the course of disease with special regard to the different subtypes existing in PHN. Methods:. Twenty patients with PHN (7 men and 13 women, age 67 ± 9.6 years) were examined at baseline (disease duration 18.1 ± 26 months) and follow-up (31.6 ± 23.8 months later) with quantitative sensory testing (protocol of the German Research Network on Neuropathic Pain). Results:. Fourteen (70%) PHN patients presented with impaired (iPHN) and 6 (30%) with preserved (pPHN) C-fiber function. Groups did not differ regarding age, disease duration, or pain intensity at baseline. Both groups did not differ regarding change in pain intensity (−0.5 ± 2.3 vs −1.7 ± 2.6 numerical rating scale, P = n.s.) at follow-up. Impaired PHN improved in thermal and mechanical detection thresholds as well as allodynia independent from change in pain intensity. By contrast, pPHN showed an increase in mechanical pain sensitivity (1.4 ± 2.5 vs −0.4 ± 2.2, P < 0.05) and a trend towards a stronger loss of detection (66% vs 33%, P = n.s.) on follow-up. Conclusion:. Results demonstrate that patients with preserved C-fiber function are more predisposed to develop signs of central sensitization as demonstrated by an increased mechanical pain sensitivity. Impaired C-fiber function is able to improve even in chronic cases, but a functional loss is unlikely to play a role here. The knowledge of development of somatosensory profiles in the course of the disease offers possibilities to optimize a mechanism-based treatment

    Sensitization of the Nociceptive System in Complex Regional Pain Syndrome

    No full text
    <div><p>Background</p><p>Complex regional pain syndrome type I (CRPS-I) is characterized by sensory, motor and autonomic abnormalities without electrophysiological evidence of a nerve lesion.</p><p>Objective</p><p>Aims were to investigate how sensory, autonomic and motor function change in the course of the disease.</p><p>Methods</p><p>19 CRPS-I patients (17 with acute, 2 with chronic CRPS, mean duration of disease 5.7±8.3, range 1–33 months) were examined with questionnaires (LANSS, NPS, MPI, Quick DASH, multiple choice list of descriptors for sensory, motor, autonomic symptoms), motor and autonomic tests as well as quantitative sensory testing according to the German Research Network on Neuropathic Pain at two visits (baseline and 36±10.6, range 16–53 months later).</p><p>Results</p><p>CRPS-I patients had an improvement of sudomotor and vasomotor function, but still a great impairment of sensory and motor function upon follow-up. Although pain and mechanical detection improved upon follow-up, thermal and mechanical pain sensitivity increased, including the contralateral side. Increase in mechanical pain sensitivity and loss of mechanical detection were associated with presence of ongoing pain.</p><p>Conclusions</p><p>The results demonstrate that patients with CRPS-I show a sensitization of the nociceptive system in the course of the disease, for which ongoing pain seems to be the most important trigger. They further suggest that measured loss of function in CRPS-I is due to pain-induced hypoesthesia rather than a minimal nerve lesion. In conclusion, this article gives evidence for a pronociceptive pain modulation profile developing in the course of CRPS and thus helps to assess underlying mechanisms of CRPS that contribute to the maintenance of patients’ pain and disability.</p></div

    Spinal fMRI reveals decreased descending inhibition during secondary mechanical hyperalgesia.

    No full text
    Mechanical hyperalgesia is one distressing symptom of neuropathic pain which is explained by central sensitization of the nociceptive system. This sensitization can be induced experimentally with the heat/capsaicin sensitization model. The aim was to investigate and compare spinal and supraspinal activation patterns of identical mechanical stimulation before and after sensitization using functional spinal magnetic resonance imaging (spinal fMRI). Sixteen healthy subjects (6 female, 10 male, mean age 27.2 ± 4.0 years) were investigated with mechanical stimulation of the C6 dermatome of the right forearm during spinal fMRI. Testing was always performed in the area outside of capsaicin application (i.e. area of secondary mechanical hyperalgesia). During slightly noxious mechanical stimulation before sensitization, activity was observed in ipsilateral dorsolateral pontine tegmentum (DLPT) which correlated with activity in ipsilateral spinal cord dorsal gray matter (dGM) suggesting activation of descending nociceptive inhibition. During secondary mechanical hyperalgesia, decreased activity was observed in bilateral DLPT, ipsilateral/midline rostral ventromedial medulla (RVM), and contralateral subnucleus reticularis dorsalis, which correlated with activity in ipsilateral dGM. Comparison of voxel-based activation patterns during mechanical stimulation before/after sensitization showed deactivations in RVM and activations in superficial ipsilateral dGM. This study revealed increased spinal activity and decreased activity in supraspinal centers involved in pain modulation (SRD, RVM, DLPT) during secondary mechanical hyperalgesia suggesting facilitation of nociception via decreased endogenous inhibition. Results should help prioritize approaches for further in vivo studies on pain processing and modulation in humans

    QST profiles of the affected extremity upon first visit and follow-up examination.

    No full text
    <p>CDT: cold detection threshold; WDT: warm detection threshold; TSL: thermal sensory limen; CPT: cold pain threshold; HPT: heat pain threshold; PPT: pressure pain threshold; MPT: mechanical pain threshold, MPS: mechanical pain sensitivity; WUR: wind-up ratio; MDT: mechanical detection threshold; VDT: vibration detection threshold; PHS: paradoxical heat sensitivity; DMA: dynamic mechanical allodynia. * p < 0.05, ** p < 0.01, *** p < 0.001.</p
    corecore