36 research outputs found
Evaluation of phylogenetic footprint discovery for predicting bacterial cis-regulatory elements and revealing their evolution
The detection of conserved motifs in promoters of orthologous genes (phylogenetic footprints) has become a common strategy to predict cis-acting regulatory elements. Several software tools are routinely used to raise hypotheses about regulation. However, these tools are generally used as black boxes, with default parameters. A systematic evaluation of optimal parameters for a footprint discovery strategy can bring a sizeable improvement to the predictions.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
p53 shapes genome-wide and cell type-specific changes in microRNA expression during the human DNA damage response.
The human DNA damage response (DDR) triggers profound changes in gene expression, whose nature and regulation remain uncertain. Although certain micro-(mi)RNA species including miR34, miR-18, miR-16 and miR-143 have been implicated in the DDR, there is as yet no comprehensive description of genome-wide changes in the expression of miRNAs triggered by DNA breakage in human cells. We have used next-generation sequencing (NGS), combined with rigorous integrative computational analyses, to describe genome-wide changes in the expression of miRNAs during the human DDR. The changes affect 150 of 1523 miRNAs known in miRBase v18 from 4-24 h after the induction of DNA breakage, in cell-type dependent patterns. The regulatory regions of the most-highly regulated miRNA species are enriched in conserved binding sites for p53. Indeed, genome-wide changes in miRNA expression during the DDR are markedly altered in TP53-/- cells compared to otherwise isogenic controls. The expression levels of certain damage-induced, p53-regulated miRNAs in cancer samples correlate with patient survival. Our work reveals genome-wide and cell type-specific alterations in miRNA expression during the human DDR, which are regulated by the tumor suppressor protein p53. These findings provide a genomic resource to identify new molecules and mechanisms involved in the DDR, and to examine their role in tumor suppression and the clinical outcome of cancer patients
CRISPR/Cas9 screen in human iPSCâderived cortical neurons identifies NEK6 as a novel disease modifier of C9orf72 poly(PR) toxicity
Introduction The most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are hexanucleotide repeats in chromosome 9 open reading frame 72 (C9orf72). These repeats produce dipeptide repeat proteins with poly(PR) being the most toxic one. Methods We performed a kinome-wide CRISPR/Cas9 knock-out screen in human induced pluripotent stem cell (iPSC) -derived cortical neurons to identify modifiers of poly(PR) toxicity, and validated the role of candidate modifiers using in vitro, in vivo, and ex-vivo studies. Results Knock-down of NIMA-related kinase 6 (NEK6) prevented neuronal toxicity caused by poly(PR). Knock-down of nek6 also ameliorated the poly(PR)-induced axonopathy in zebrafish and NEK6 was aberrantly expressed in C9orf72 patients. Suppression of NEK6 expression and NEK6 activity inhibition rescued axonal transport defects in cortical neurons from C9orf72 patient iPSCs, at least partially by reversing p53-related DNA damage. Discussion We identified NEK6, which regulates poly(PR)-mediated p53-related DNA damage, as a novel therapeutic target for C9orf72 FTD/ALS
Bioinformatic study of the evolution of the transcriptional regulation in bacteria
L'objet de cette thĂšse de bioinformatique est de mieux comprendre lâensemble des systĂšmes de rĂ©gulation gĂ©nique chez les bactĂ©ries. La disponibilitĂ© de centaines de gĂ©nomes complets chez les bactĂ©ries ouvre la voie aux approches de gĂ©nomique comparative et donc Ă lâĂ©tude de lâĂ©volution des rĂ©seaux transcriptionnels bactĂ©riens. Dans un premier temps, nous avons implĂ©mentĂ© et validĂ© plusieurs mĂ©thodes de prĂ©diction dâopĂ©rons sur base des gĂ©nomes bactĂ©riens sĂ©quencĂ©s. Suite Ă cette Ă©tude, nous avons dĂ©cidĂ© dâutiliser un algorithme qui se base simplement sur un seuil sur la distance intergĂ©nique, Ă savoir la distance en paires de bases entre deux gĂšnes adjacents. Notre Ă©valuation sur base dâopĂ©rons annotĂ©s chez Escherichia coli et Bacillus subtilis nous permet de dĂ©finir un seuil optimal de 55pb pour lequel nous obtenons respectivement 78 et 79% de prĂ©cision. DeuxiĂšmement, lâidentification des motifs de rĂ©gulation transcriptionnelle, tels les sites de liaison des facteurs de transcription, donne des indications de lâorganisation de la rĂ©gulation. Nous avons dĂ©veloppĂ© une mĂ©thode de recherche dâempreintes phylogĂ©nĂ©tiques qui consiste Ă dĂ©couvrir des paires de mots espacĂ©s (dyades) statistiquement sur-reprĂ©sentĂ©es en amont de gĂšnes orthologues bactĂ©riens. Notre mĂ©thode est particuliĂšrement adaptĂ©e Ă la recherche de motifs chez les bactĂ©ries puisquâelle profite dâune part des centaines de gĂ©nomes bactĂ©riens sĂ©quencĂ©s et dâautre part les facteurs de transcription bactĂ©riens prĂ©sentent des domaines HĂ©lice-Tour-HĂ©lice qui reconnaissent spĂ©cifiquement des dyades. Une Ă©valuation systĂ©matique sur 368 gĂšnes de E.coli a permis dâĂ©valuer les performances de notre mĂ©thode et de tester lâinfluence de plus de 40 combinaisons de paramĂštres concernant le niveau taxonomique, lâinfĂ©rence dâopĂ©rons, le filtrage des dyades spĂ©cifiques de E.coli, le choix des modĂšles de fond pour le calcul du score de significativitĂ©, et enfin un seuil sur ce score. Lâanalyse dĂ©taillĂ©e pour un cas dâĂ©tude, lâautorĂ©gulation du facteur de transcription LexA, a montrĂ© que notre approche permet dâĂ©tudier lâĂ©volution des sites dâauto-rĂ©gulation dans plusieurs branches taxonomiques des bactĂ©ries. Nous avons ensuite appliquĂ© la dĂ©tection dâempreintes phylogĂ©nĂ©tiques Ă chaque gĂšne de E.coli, et utilisĂ© les motifs dĂ©tectĂ©s comme significatifs afin de prĂ©dire les gĂšnes co-rĂ©gulĂ©s. Au centre de cette derniĂšre stratĂ©gie, est dĂ©finie une matrice de scores de significativitĂ© pour chaque mot dĂ©tectĂ© par gĂšne chez lâorganisme de rĂ©fĂ©rence. Plusieurs mĂ©triques ont Ă©tĂ© dĂ©finies pour la comparaison de paires de profils de scores de sorte que des paires de gĂšnes ayant des motifs dĂ©tectĂ©s significativement en commun peuvent ĂȘtre regroupĂ©es. Ainsi, lâensemble des nos mĂ©thodes nous permet de reconstruire des rĂ©seaux de co-rĂ©gulation uniquement Ă partir de sĂ©quences gĂ©nomiques, et nous ouvre la voie Ă lâĂ©tude de lâorganisation et de lâĂ©volution de la rĂ©gulation transcriptionnelle pour des gĂ©nomes dont on ne connaĂźt rien.The purpose of my thesis is to study the evolution of regulation within bacterial genomes by using a cross-genomic comparative approach. Nowadays, numerous genomes have been sequenced facilitating in silico analysis in order to detect groups of functionally related genes and to predict the mechanism of their relative regulation. In this project, we combined prediction of operons and regulons in order to reconstruct the transcriptional regulatory network for a bacterial genome. We have implemented three methods in order to predict operons from a bacterial genome and evaluated them on hundreds of annotated operons of Escherichia coli and Bacillus subtilis. It turns out that a simple distance-based threshold method gives good results with about 80% of accuracy. The principle of this method is to classify pairs of adjacent genes as âwithin operonâ or âtranscription unit borderâ, respectively, by using a threshold on their intergenic distance: two adjacent genes are predicted to be within an operon if their intergenic distance is smaller than 55bp. In the second part of my thesis, I evaluated the performances of a phylogenetic footprinting approach based on the detection of over-represented spaced motifs. This method is particularly suitable for (but not restricted to) Bacteria, since such motifs are typically bound by factors containing a Helix-Turn-Helix domain. We evaluated footprint discovery in 368 E.coli K12 genes with annotated sites, under 40 different combinations of parameters (taxonomical level, background model, organism-specific filtering, operon inference, significance threshold). Motifs are assessed both at the level of correctness and significance. The footprint discovery method proposed here shows excellent results with E. coli and can readily be extended to predict cis-acting regulatory signals and propose testable hypotheses in bacterial genomes for which nothing is known about regulation. Moreover, the predictive power of the strategy, and its capability to track the evolutionary divergence of cis-regulatory motifs was illustrated with the example of LexA auto-regulation, for which our predictions are remarkably consistent with the binding sites characterized in different taxonomical groups. A next challenge was to identify groups of co-regulated genes (regulons), by regrouping genes with similar motifs, in order to address the challenging domain of the evolution of transcriptional regulatory networks. We tested different metrics to detect putative pairs of co-regulated genes. The comparison between predicted and annotated co-regulation networks shows a high positive predictive value, since a good fraction of the predicted associations correspond to annotated co-regulations, and a low sensitivity, which may be due to the consequence of highly connected transcription factors (global regulator). A regulon-per-regulon analysis indeed shows that the sensitivity is very weak for these transcription factors, but can be quite good for specific transcription factors. The originality of this global strategy is to be able to infer a potential network from the sole analysis of genome sequences, and without any prior knowledge about the regulation in the considered organism.Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe
Bioinformatic study of the evolution of the transcriptional regulation in bacteria
L'objet de cette thĂšse de bioinformatique est de mieux comprendre lâensemble des systĂšmes de rĂ©gulation gĂ©nique chez les bactĂ©ries. La disponibilitĂ© de centaines de gĂ©nomes complets chez les bactĂ©ries ouvre la voie aux approches de gĂ©nomique comparative et donc Ă lâĂ©tude de lâĂ©volution des rĂ©seaux transcriptionnels bactĂ©riens. Dans un premier temps, nous avons implĂ©mentĂ© et validĂ© plusieurs mĂ©thodes de prĂ©diction dâopĂ©rons sur base des gĂ©nomes bactĂ©riens sĂ©quencĂ©s. Suite Ă cette Ă©tude, nous avons dĂ©cidĂ© dâutiliser un algorithme qui se base simplement sur un seuil sur la distance intergĂ©nique, Ă savoir la distance en paires de bases entre deux gĂšnes adjacents. Notre Ă©valuation sur base dâopĂ©rons annotĂ©s chez Escherichia coli et Bacillus subtilis nous permet de dĂ©finir un seuil optimal de 55pb pour lequel nous obtenons respectivement 78 et 79% de prĂ©cision. DeuxiĂšmement, lâidentification des motifs de rĂ©gulation transcriptionnelle, tels les sites de liaison des facteurs de transcription, donne des indications de lâorganisation de la rĂ©gulation. Nous avons dĂ©veloppĂ© une mĂ©thode de recherche dâempreintes phylogĂ©nĂ©tiques qui consiste Ă dĂ©couvrir des paires de mots espacĂ©s (dyades) statistiquement sur-reprĂ©sentĂ©es en amont de gĂšnes orthologues bactĂ©riens. Notre mĂ©thode est particuliĂšrement adaptĂ©e Ă la recherche de motifs chez les bactĂ©ries puisquâelle profite dâune part des centaines de gĂ©nomes bactĂ©riens sĂ©quencĂ©s et dâautre part les facteurs de transcription bactĂ©riens prĂ©sentent des domaines HĂ©lice-Tour-HĂ©lice qui reconnaissent spĂ©cifiquement des dyades. Une Ă©valuation systĂ©matique sur 368 gĂšnes de E.coli a permis dâĂ©valuer les performances de notre mĂ©thode et de tester lâinfluence de plus de 40 combinaisons de paramĂštres concernant le niveau taxonomique, lâinfĂ©rence dâopĂ©rons, le filtrage des dyades spĂ©cifiques de E.coli, le choix des modĂšles de fond pour le calcul du score de significativitĂ©, et enfin un seuil sur ce score. Lâanalyse dĂ©taillĂ©e pour un cas dâĂ©tude, lâautorĂ©gulation du facteur de transcription LexA, a montrĂ© que notre approche permet dâĂ©tudier lâĂ©volution des sites dâauto-rĂ©gulation dans plusieurs branches taxonomiques des bactĂ©ries. Nous avons ensuite appliquĂ© la dĂ©tection dâempreintes phylogĂ©nĂ©tiques Ă chaque gĂšne de E.coli, et utilisĂ© les motifs dĂ©tectĂ©s comme significatifs afin de prĂ©dire les gĂšnes co-rĂ©gulĂ©s. Au centre de cette derniĂšre stratĂ©gie, est dĂ©finie une matrice de scores de significativitĂ© pour chaque mot dĂ©tectĂ© par gĂšne chez lâorganisme de rĂ©fĂ©rence. Plusieurs mĂ©triques ont Ă©tĂ© dĂ©finies pour la comparaison de paires de profils de scores de sorte que des paires de gĂšnes ayant des motifs dĂ©tectĂ©s significativement en commun peuvent ĂȘtre regroupĂ©es. Ainsi, lâensemble des nos mĂ©thodes nous permet de reconstruire des rĂ©seaux de co-rĂ©gulation uniquement Ă partir de sĂ©quences gĂ©nomiques, et nous ouvre la voie Ă lâĂ©tude de lâorganisation et de lâĂ©volution de la rĂ©gulation transcriptionnelle pour des gĂ©nomes dont on ne connaĂźt rien.The purpose of my thesis is to study the evolution of regulation within bacterial genomes by using a cross-genomic comparative approach. Nowadays, numerous genomes have been sequenced facilitating in silico analysis in order to detect groups of functionally related genes and to predict the mechanism of their relative regulation. In this project, we combined prediction of operons and regulons in order to reconstruct the transcriptional regulatory network for a bacterial genome. We have implemented three methods in order to predict operons from a bacterial genome and evaluated them on hundreds of annotated operons of Escherichia coli and Bacillus subtilis. It turns out that a simple distance-based threshold method gives good results with about 80% of accuracy. The principle of this method is to classify pairs of adjacent genes as âwithin operonâ or âtranscription unit borderâ, respectively, by using a threshold on their intergenic distance: two adjacent genes are predicted to be within an operon if their intergenic distance is smaller than 55bp. In the second part of my thesis, I evaluated the performances of a phylogenetic footprinting approach based on the detection of over-represented spaced motifs. This method is particularly suitable for (but not restricted to) Bacteria, since such motifs are typically bound by factors containing a Helix-Turn-Helix domain. We evaluated footprint discovery in 368 E.coli K12 genes with annotated sites, under 40 different combinations of parameters (taxonomical level, background model, organism-specific filtering, operon inference, significance threshold). Motifs are assessed both at the level of correctness and significance. The footprint discovery method proposed here shows excellent results with E. coli and can readily be extended to predict cis-acting regulatory signals and propose testable hypotheses in bacterial genomes for which nothing is known about regulation. Moreover, the predictive power of the strategy, and its capability to track the evolutionary divergence of cis-regulatory motifs was illustrated with the example of LexA auto-regulation, for which our predictions are remarkably consistent with the binding sites characterized in different taxonomical groups. A next challenge was to identify groups of co-regulated genes (regulons), by regrouping genes with similar motifs, in order to address the challenging domain of the evolution of transcriptional regulatory networks. We tested different metrics to detect putative pairs of co-regulated genes. The comparison between predicted and annotated co-regulation networks shows a high positive predictive value, since a good fraction of the predicted associations correspond to annotated co-regulations, and a low sensitivity, which may be due to the consequence of highly connected transcription factors (global regulator). A regulon-per-regulon analysis indeed shows that the sensitivity is very weak for these transcription factors, but can be quite good for specific transcription factors. The originality of this global strategy is to be able to infer a potential network from the sole analysis of genome sequences, and without any prior knowledge about the regulation in the considered organism.Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe
Discovery of conserved motifs in promoters of orthologous genes in prokaryotes
International audienceno abstrac
Evaluation of phylogenetic footprint discovery for predicting bacterial cis-regulatory elements and revealing their evolution-5
<p><b>Copyright information:</b></p><p>Taken from "Evaluation of phylogenetic footprint discovery for predicting bacterial cis-regulatory elements and revealing their evolution"</p><p>http://www.biomedcentral.com/1471-2105/9/37</p><p>BMC Bioinformatics 2008;9():37-37.</p><p>Published online 23 Jan 2008</p><p>PMCID:PMC2248561.</p><p></p>ia [78]; Gram-positives [48, 79, 80]. Sequence logos were generated with Weblogo [81] from the alignment of the annotated sites. The sequence logo was obtained from annotated sites in RegulonDB [82, 43]
Investigating transcriptional regulation: from analysis of complex networks to discovery of cis-regulatory elements.
Regulation of gene expression at the transcriptional level is a fundamental mechanism that is well conserved in all cellular systems. Due to advances in large-scale experimental analyses, we now have a wealth of information on gene regulation such as mRNA expression level across multiple conditions, genome-wide location data of transcription factors and data on transcription factor binding sites. This knowledge can be used to reconstruct transcriptional regulatory networks. Such networks are usually represented as directed graphs where regulatory interactions are depicted as directed edges from the transcription factor nodes to the target gene nodes. This abstract representation allows us to apply graph theory to study transcriptional regulation at global and local levels, to predict regulatory motifs and regulatory modules such as regulons and to compare the regulatory network of different genomes. Here we review some of the available computational methodologies for studying transcriptional regulatory networks as well as their interpretation.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
Evaluation of phylogenetic footprint discovery for predicting bacterial cis-regulatory elements and revealing their evolution-1
<p><b>Copyright information:</b></p><p>Taken from "Evaluation of phylogenetic footprint discovery for predicting bacterial cis-regulatory elements and revealing their evolution"</p><p>http://www.biomedcentral.com/1471-2105/9/37</p><p>BMC Bioinformatics 2008;9():37-37.</p><p>Published online 23 Jan 2008</p><p>PMCID:PMC2248561.</p><p></p>ia [78]; Gram-positives [48, 79, 80]. Sequence logos were generated with Weblogo [81] from the alignment of the annotated sites. The sequence logo was obtained from annotated sites in RegulonDB [82, 43]