69 research outputs found
Oidium longipes, a new powdery mildew fungus on petunia in the USA: A potential threat to ornamental and vegetable solanaceous crops
This is the first North American report of Oidium longipes, an anamorphic powdery mildew species described recently in Europe. It was found on vegetatively propagated petunia grown in a commercial greenhouse in New Jersey, USA, where it caused a rapidly spreading disease. The pathogen might have originated offshore and may have already been distributed in the United States through horticultural trade. During field surveys in Europe, it was found on petunia in Hungary and Austria as well; this is the first report of O. longipes from these two countries. A detailed light microscopy study of American and European specimens of O. longipes, including freshly collected samples and authentic herbarium specimens, revealed that its conidiophore morphology is more variable than illustrated in the original species description or in subsequent works. Microcycle conidiation, a process not yet known to occur in powdery mildews, was repeatedly observed in O. longipes. The rDNA internal transcribed spacer (ITS) sequences were identical in colonies containing different conidiophore types as well as in a total of five specimens collected from petunia in the United States, Austria, Hungary, Germany, and Switzerland. A phylogenetic analysis of the ITS sequences revealed that the closest known relative of O. longipes is O. lycopersici, known to infect tomato only in Australia. Cross-inoculation tests showed that O. longipes from petunia heavily infected tobacco cv. Xanthi, while the tomato and eggplant cultivars tested were moderately susceptible to this pathogen. These results indicate that its spread represents a potential danger to a number of solanaceous crops. Our ad hoc field surveys conducted in 2006 and 2007 did not detect it outside New Jersey in the United States; all the other powdery mildew–infected petunias, collected in New York and Indiana, were infected by Podosphaera xanthii. In Europe, most of the powdery mildew–infected petunias examined in this study were infected by P. xanthii or Golovinomyces orontii. Our multiple inoculation tests revealed that the same petunia plants and even the same leaves can be infected concomitantly by O. longipes, O. neolycopersici, G. orontii, and P. xanthii. Thus, it is at present unclear to what extent O. longipes contributes to the powdery mildew epidemics that develop year after year on solanaceous plants in many parts of the world
Oidium neolycopersici: Intra-specific variability inferred from AFLP analysis and relationship with closely related powdery mildew fungi infecting various plant species
Previous works indicated a considerable variation in the pathogenicity, virulence, and host range of Oidium neolycopersici isolates causing tomato powdery mildew epidemics in many parts of the world. In this study, rDNA internal transcribed spacer (ITS) sequences, and amplified fragment length polymorphism (AFLP) patterns were analyzed in 17 O. neolycopersici samples collected in Europe, North America, and Japan, including those which overcame some of the tomato major resistance genes. The ITS sequences were identical in all 10 samples tested and were also identical to ITS sequences of eight previously studied O. neolycopersici specimens. The AFLP analysis revealed a high genetic diversity in O. neolycopersici and indicated that all 17 samples represented different genotypes. This might suggest the existence of either a yet unrevealed sexual reproduction or other genetic mechanisms that maintain a high genetic variability in O. neolycopersici. No clear correlation was found between the virulence and the AFLP patterns of the O. neolycopersici isolates studied. The relationship between O. neolycopersici and powdery mildew anamorphs infecting Aquilegia vulgaris, Chelidonium majus, Passiflora caerulea, and Sedum alboroseum was also investigated. These anamorphs are morphologically indistinguishable from and phylogenetically closely related to O. neolycopersici. The cross-inoculation tests and the analyses of ITS sequences and AFLP patterns jointly indicated that the powdery mildew anamorphs collected from the above mentioned plant species all represent distinct, but closely related species according to the phylogenetic species recognition. All these species were pathogenic only to their original host plant species, except O. neolycopersici which infected S. alboroseum, tobacco, petunia, and Arabidopsis thaliana, in addition to tomato, in cross-inoculation tests. This is the first genome-wide study that investigates the relationships among powdery mildews that are closely related based on ITS sequences and morphology. The results indicate that morphologically indistinguishable powdery mildews that differed in only one to five single nucleotide positions in their ITS region are to be considered as different taxa with distinct host ranges
High field level crossing studies on spin dimers in the low dimensional quantum spin system NaT(CO)(HO) with T=Ni,Co,Fe,Mn
In this paper we demonstrate the application of high magnetic fields to study
the magnetic properties of low dimensional spin systems. We present a case
study on the series of 2-leg spin-ladder compounds
NaT(CO)(HO) with T = Ni, Co, Fe and Mn. In all
compounds the transition metal is in the high spin configuation. The
localized spin varies from S=1 to 3/2, 2 and 5/2 within this series. The
magnetic properties were examined experimentally by magnetic susceptibility,
pulsed high field magnetization and specific heat measurements. The data are
analysed using a spin hamiltonian description. Although the transition metal
ions form structurally a 2-leg ladder, an isolated dimer model consistently
describes the observations very well. This behaviour can be understood in terms
of the different coordination and superexchange angles of the oxalate ligands
along the rungs and legs of the 2-leg spin ladder. All compounds exhibit
magnetic field driven ground state changes which at very low temperatures lead
to a multistep behaviour in the magnetization curves. In the Co and Fe
compounds a strong axial anisotropy induced by the orbital magnetism leads to a
nearly degenerate ground state and a strongly reduced critical field. We find a
monotonous decrease of the intradimer magnetic exchange if the spin quantum
number is increased
New Herbig-Haro Objects and Giant Outflows in Orion
We present the results of a photographic and CCD imaging survey for
Herbig-Haro (HH) objects in the L1630 and L1641 giant molecular clouds in
Orion. The new HH flows were initially identified from a deep H-alpha film from
the recently commissioned AAO/UKST H-alpha Survey of the southern sky. Our
scanned H-alpha and broad band R images highlight both the improved resolution
of the H-alpha survey and the excellent contrast of the H-alpha flux with
respect to the broad band R. Comparative IVN survey images allow us to
distinguish between emission and reflection nebulosity. Our CCD H-alpha, [SII],
continuum and I band images confirm the presence of a parsec-scale HH flow
associated with the Ori I-2 cometary globule and several parsec-scale strings
of HH emission centred on the L1641-N infrared cluster. Several smaller
outflows display one-sided jets. Our results indicate that for declinations
south of -6 degrees in L1641, parsec-scale flows appear to be the major force
in the large-scale movement of optical dust and molecular gas.Comment: 14 pages, Latex using MN style, 21 figures in JPEG format. Higher
resolution figures available from S.L. Mader. Accepted by MNRAS. Email
contact for higher resolution images: [email protected]
Origin and ascent history of unusually crystal-rich alkaline basaltic magmas from the western Pannonian Basin
The last eruptions of the monogenetic Bakony-Balaton Highland Volcanic Field
(western Pannonian Basin, Hungary) produced unusually crystal- and xenolith-rich
alkaline basalts which are unique among the alkaline basalts of the Carpathian-
Pannonian Region. Similar alkaline basalts are only rarely known in other volcanic
fields of the world. These special basaltic magmas fed the eruptions of two closely
located volcanic centres: the Bondoró-hegy and the Füzes-tó scoria cone. Their
uncommon enrichment in diverse crystals produced unique rock textures and modified
original magma compositions (13.1-14.2 wt.% MgO, 459-657 ppm Cr, 455-564 ppm Ni
contents).
Detailed mineral-scale textural and chemical analyses revealed that the Bondoró-hegy
and Füzes-tó alkaline basaltic magmas have a complex ascent history, and that most
of their minerals (~30 vol.% of the rocks) represent foreign crystals derived from
different levels of the underlying lithosphere. The most abundant xenocrysts, olivine,
orthopyroxene, clinopyroxene and spinel, were incorporated from different regions and
rock types of the subcontinental lithospheric mantle. Megacrysts of clinopyroxene and
spinel could have originated from pegmatitic veins / sills which probably represent
magmas crystallized near the crust-mantle boundary. Green clinopyroxene xenocrysts
could have been derived from lower crustal mafic granulites. Minerals that crystallized
in situ from the alkaline basaltic melts (olivine with Cr-spinel inclusions, clinopyroxene,
plagioclase, Fe-Ti oxides) are only represented by microphenocrysts and overgrowths
on the foreign crystals. The vast amount of peridotitic (most common) and mafic
granulitic materials indicates a highly effective interaction between the ascending
magmas and wall rocks at lithospheric mantle and lower crustal levels. However,
fragments from the middle and upper crust are absent from the studied basalts,
suggesting a change in the style (and possibly rate) of magma ascent in the crust.
These xenocryst- and xenolith-rich basalts yield divers tools for estimating magma
ascent rate that is important for hazard forecasting in monogenetic volcanic fields.
According to the estimated ascent rates, the Bondoró-hegy and Füzes-tó alkaline
basaltic magmas could have reached the surface within hours to few days, similarly to
the estimates for other eruptive centres in the Pannonian Basin which were fed by
"normal" (crystal- and xenolith-poor) alkaline basalts
Coordination of Cell Polarity during Xenopus Gastrulation
Cell polarity is an essential feature of animal cells contributing to morphogenesis. During Xenopus gastrulation, it is known that chordamesoderm cells are polarized and intercalate each other allowing anterior-posterior elongation of the embryo proper by convergent extension (CE). Although it is well known that the cellular protrusions at both ends of polarized cells exert tractive force for intercalation and that PCP pathway is known to be essential for the cell polarity, little is known about what triggers the cell polarization and what the polarization causes to control intracellular events enabling the intercalation that leads to the CE. In our research, we used EB3 (end-binding 3), a member of +TIPs that bind to the plus end of microtubule (MT), to visualize the intracellular polarity of chordamesoderm cells during CE to investigate the trigger of the establishment of cell polarity. We found that EB3 movement is polarized in chordamesoderm cells and that the notochord-somite tissue boundary plays an essential role in generating the cell polarity. This polarity was generated before the change of cell morphology and the polarized movement of EB3 in chordamesoderm cells was also observed near the boundary between the chordamesoderm tissue and naïve ectoderm tissue or lateral mesoderm tissues induced by a low concentration of nodal mRNA. These suggest that definitive tissue separation established by the distinct levels of nodal signaling is essential for the chordamesodermal cells to acquire mediolateral cell polarity
Rab11 Is Required for Epithelial Cell Viability, Terminal Differentiation, and Suppression of Tumor-Like Growth in the Drosophila Egg Chamber
The Drosophila egg chamber provides an excellent system in which to study the specification and differentiation of epithelial cell fates because all of the steps, starting with the division of the corresponding stem cells, called follicle stem cells, have been well described and occur many times over in a single ovary.Here we investigate the role of the small Rab11 GTPase in follicle stem cells (FSCs) and in their differentiating daughters, which include main body epithelial cells, stalk cells and polar cells. We show that rab11-null FSCs maintain their ability to self renew, even though previous studies have shown that FSC self renewal is dependent on maintenance of E-cadherin-based intercellular junctions, which in many cell types, including Drosophila germline stem cells, requires Rab11. We also show that rab11-null FSCs give rise to normal numbers of cells that enter polar, stalk, and epithelial cell differentiation pathways, but that none of the cells complete their differentiation programs and that the epithelial cells undergo premature programmed cell death. Finally we show, through the induction of rab11-null clones at later points in the differentiation program, that Rab11 suppresses tumor-like growth of epithelial cells. Thus, rab11-null epithelial cells arrest differentiation early, assume an aberrant cell morphology, delaminate from the epithelium, and invade the neighboring germline cyst. These phenotypes are associated with defects in E-cadherin localization and a general loss of cell polarity.While previous studies have revealed tumor suppressor or tumor suppressor-like activity for regulators of endocytosis, our study is the first to identify such activity for regulators of endocytic recycling. Our studies also support the recently emerging view that distinct mechanisms regulate junction stability and plasticity in different tissues
A Modifier Screen for Bazooka/PAR-3 Interacting Genes in the Drosophila Embryo Epithelium
The development and homeostasis of multicellular organisms depends on sheets of epithelial cells. Bazooka (Baz; PAR-3) localizes to the apical circumference of epithelial cells and is a key hub in the protein interaction network regulating epithelial structure. We sought to identify additional proteins that function with Baz to regulate epithelial structure in the Drosophila embryo.The baz zygotic mutant cuticle phenotype could be dominantly enhanced by loss of known interaction partners. To identify additional enhancers, we screened molecularly defined chromosome 2 and 3 deficiencies. 37 deficiencies acted as strong dominant enhancers. Using deficiency mapping, bioinformatics, and available single gene mutations, we identified 17 interacting genes encoding known and predicted polarity, cytoskeletal, transmembrane, trafficking and signaling proteins. For each gene, their loss of function enhanced adherens junction defects in zygotic baz mutants during early embryogenesis. To further evaluate involvement in epithelial polarity, we generated GFP fusion proteins for 15 of the genes which had not been found to localize to the apical domain previously. We found that GFP fusion proteins for Drosophila ASAP, Arf79F, CG11210, Septin 5 and Sds22 could be recruited to the apical circumference of epithelial cells. Nine of the other proteins showed various intracellular distributions, and one was not detected.Our enhancer screen identified 17 genes that function with Baz to regulate epithelial structure in the Drosophila embryo. Our secondary localization screen indicated that some of the proteins may affect epithelial cell polarity by acting at the apical cell cortex while others may act through intracellular processes. For 13 of the 17 genes, this is the first report of a link to baz or the regulation of epithelial structure
Endocytic and Recycling Endosomes Modulate Cell Shape Changes and Tissue Behaviour during Morphogenesis in Drosophila
During development tissue deformations are essential for the generation of organs and to provide the final form of an organism. These deformations rely on the coordination of individual cell behaviours which have their origin in the modulation of subcellular activities. Here we explore the role endocytosis and recycling on tissue deformations that occur during dorsal closure of the Drosophila embryo. During this process the AS contracts and the epidermis elongates in a coordinated fashion, leading to the closure of a discontinuity in the dorsal epidermis of the Drosophila embryo. We used dominant negative forms of Rab5 and Rab11 to monitor the impact on tissue morphogenesis of altering endocytosis and recycling at the level of single cells. We found different requirements for endocytosis (Rab5) and recycling (Rab11) in dorsal closure, furthermore we found that the two processes are differentially used in the two tissues. Endocytosis is required in the AS to remove membrane during apical constriction, but is not essential in the epidermis. Recycling is required in the AS at early stages and in the epidermis for cell elongation, suggesting a role in membrane addition during these processes. We propose that the modulation of the balance between endocytosis and recycling can regulate cellular morphology and tissue deformations during morphogenesis
A Polarised Population of Dynamic Microtubules Mediates Homeostatic Length Control in Animal Cells
An analysis of cells grown on micro-patterned lines, and of cells during zebrafish development, identifies a population of microtubules that align along the long axis of cells to mediate homeostatic length control
- …