10 research outputs found

    LONG-TERM SURVIVAL OF THE TRANSPLANTED KIDNEY AND THE CLINICAL RELEVANCE OF DONOR-SPECIFIC ANTIBODIES

    Get PDF
    The aim of our study was to evaluate the relevance of donor-specific antibodies (DSA) as defined by solid-phase single-antigen (SA) assays for predicting long-term graft survival after kidney transplantation. Sera from 132 kidney transplant recipients were retrospectively tested before, 3, 6 and 12 months after transplantation. The incidence of rejection and graft survival was followed up for 7 years. We found 29 episodes of acute cellular rejection (CR), 21 cases of antibody-mediated rejection (AMR) and 18 graft failures due to immunological reasons. Pre-transplant DSA and DSA three months after transplantation correlated with an increased rate of AMR and impaired graft function. After the fourth year, recipients with persistent DSA were at a higher risk of graft failure (p = 0.0317). Antibody specificity was prevailingly to HLA class I antigens (66.6% DSA, 75% non-DSA). During the first year after transplantation, the number of patients with non-DSA decreased (30.3% to 10.7%), while, due to de novo production of antibodies, the number of DSA positive patients remained constant. Conclusion: Detection of antibodies to HLA antigens using solid-phase assays, especially single-antigen bead technology before and three months after transplantation is predictive for increased incidence of antibody-mediated rejection and impaired long-term kidney graft survival

    Magnetic resonance imaging biomarkers for chronic kidney disease: a position paper from the European Cooperation in Science and Technology Action PARENCHIMA

    Get PDF
    Functional renal magnetic resonance imaging (MRI) has seen a number of recent advances, and techniques are now available that can generate quantitative imaging biomarkers with the potential to improve the management of kidney disease. Such biomarkers are sensitive to changes in renal blood flow, tissue perfusion, oxygenation and microstructure (including inflammation and fibrosis), processes that are important in a range of renal diseases including chronic kidney disease. However, several challenges remain to move these techniques towards clinical adoption, from technical validation through biological and clinical validation, to demonstration of cost-effectiveness and regulatory qualification. To address these challenges, the European Cooperation in Science and Technology Action PARENCHIMA was initiated in early 2017. PARENCHIMA is a multidisciplinary pan-European network with an overarching aim of eliminating the main barriers to the broader evaluation, commercial exploitation and clinical use of renal MRI biomarkers. This position paper lays out PARENCHIMA’s vision on key clinical questions that MRI must address to become more widely used in patients with kidney disease, first within research settings and ultimately in clinical practice. We then present a series of practical recommendations to accelerate the study and translation of these techniques

    First-in-human Study With LIS1, a Next-generation Porcine Low Immunogenicity Antilymphocyte Immunoglobulin in Kidney Transplantation

    No full text
    International audienceBackground : Polyclonal rabbit antithymocyte globulins (ATGs) are commonly used in organ transplantation as induction. Anti- N -glycolylneuraminic acid carbohydrate antibodies which develop in response to rabbit carbohydrate antigens might lead to unwanted systemic inflammation. LIS1, the first new generation of antilymphocyte globulins (ALGs) derived from double knockout swine, lacking carbohydrate xenoantigens was already tested in nonhuman primates and rodent models. Methods : This open-label, single-site, dose escalation, first-in-human, phase 1 study evaluated the safety, T cell depletion, pharmacokinetics, and pharmacodynamics of LIS1. In an ascending dose cohort (n = 5), a primary kidney transplant recipient at low immunologic risk (panel reactive antibody [PRA] < 20%), received LIS1 for 5 d at either 0.6, 1, 3, 6, or 8 mg/kg. After each patient completed treatment, the data safety monitoring board approved respective dose escalation. In the therapeutic dose cohort (n = 5) in patients with PRA <50% without donor specific antibodies, 2 patients received 8 mg/kg and 3 patients 10 mg/kg. Results : CD3 + T cell depletion <100/mm 3 at day 2 was observed in all patients who received 6, 8, and 10 mg/kg of LIS1. The terminal half-life of LIS1 was 33.7 d with linearity in its disposition. Lymphocyte repopulation was fast and pretransplant lymphocyte subpopulation counts recovered within 2–4 wk. LIS1 was well tolerated, neither cytokine release syndrome nor severe thrombocytopenia or leukopenia were noticed. Antibodies to LIS1 were not detected. Conclusions : In this first-in-human trial, genome-edited swine-derived polyclonal LIS1 ALG was well tolerated, did not elicit antidrug antibodies, and caused time-limited T cell depletion in low- and medium-risk kidney transplant recipients

    Quantitative and qualitative changes in anti‐Neu5Gc antibody response following rabbit anti‐thymocyte IgG induction in kidney allograft recipients

    No full text
    International audienceAntibodies of non-human mammals are glycosylated with carbohydrate antigens, such as galactose-α-1-3-galactose (α-Gal) and N-glycolylneuraminic acid (Neu5Gc). These non-human carbohydrate antigens are highly immunogenic in humans due to loss-of-function mutations of the key genes involved in their synthesis. Such immunogenic carbohydrates are expressed on therapeutic polyclonal rabbit anti-human T-cell IgGs (anti-thymocyte globulin; ATG), the most popular induction treatment in allograft recipients. To decipher the quantitative and qualitative response against these antigens in immunosuppressed patients, particularly against Neu5Gc, which may induce endothelial inflammation in both the graft and the host. We report a prospective study of the antibody response against α-Gal and Neu5Gc-containing glycans following rabbit ATG induction compared to controls. We show a drop in the overall levels of anti-Neu5Gc antibodies at 6 and 12 months post-graft compared to the pre-existing levels due to the major early immunosuppression. However, in contrast, in a cross-sectional study there was a highly significant increase in anti-Neu5Gc IgGs levels at 6 months post-graft in the ATG-treated compared to non-treated patients(P = 0.007), with a clear hierarchy favouring anti-Neu5Gc over anti-Gal response. A sialoglycan microarray analysis revealed that the increased anti-Neu5Gc IgG response was still highly diverse against multiple different Neu5Gc-containing glycans. Furthermore, some of the ATG-treated patients developed a shift in their anti-Neu5Gc IgG repertoire compared with the baseline, recognizing different patterns of Neu5Gc-glycans. In contrast to Gal, Neu5Gc epitopes remain antigenic in severely immunosuppressed patients, who also develop an anti-Neu5Gc repertoire shift. The clinical implications of these observations are discussed

    Magnetic resonance imaging biomarkers for chronic kidney disease : a position paper from the European Cooperation in Science and Technology Action PARENCHIMA

    No full text
    Functional renal magnetic resonance imaging (MRI) has seen a number of recent advances, and techniques are now available that can generate quantitative imaging biomarkers with the potential to improve the management of kidney disease. Such biomarkers are sensitive to changes in renal blood flow, tissue perfusion, oxygenation and microstructure (including inflammation and fibrosis), processes that are important in a range of renal diseases including chronic kidney disease. However, several challenges remain to move these techniques towards clinical adoption, from technical validation through biological and clinical validation, to demonstration of cost-effectiveness and regulatory qualification. To address these challenges, the European Cooperation in Science and Technology Action PARENCHIMA was initiated in early 2017. PARENCHIMA is a multidisciplinary pan-European network with an overarching aim of eliminating the main barriers to the broader evaluation, commercial exploitation and clinical use of renal MRI biomarkers. This position paper lays out PARENCHIMA's vision on key clinical questions that MRI must address to become more widely used in patients with kidney disease, first within research settings and ultimately in clinical practice. We then present a series of practical recommendations to accelerate the study and translation of these techniques

    Magnetic resonance imaging biomarkers for chronic kidney disease: a position paper from the European Cooperation in Science and Technology Action PARENCHIMA.

    Get PDF
    Functional renal magnetic resonance imaging (MRI) has seen a number of recent advances, and techniques are now available that can generate quantitative imaging biomarkers with the potential to improve the management of kidney disease. Such biomarkers are sensitive to changes in renal blood flow, tissue perfusion, oxygenation and microstructure (including inflammation and fibrosis), processes that are important in a range of renal diseases including chronic kidney disease. However, several challenges remain to move these techniques towards clinical adoption, from technical validation through biological and clinical validation, to demonstration of cost-effectiveness and regulatory qualification. To address these challenges, the European Cooperation in Science and Technology Action PARENCHIMA was initiated in early 2017. PARENCHIMA is a multidisciplinary pan-European network with an overarching aim of eliminating the main barriers to the broader evaluation, commercial exploitation and clinical use of renal MRI biomarkers. This position paper lays out PARENCHIMA's vision on key clinical questions that MRI must address to become more widely used in patients with kidney disease, first within research settings and ultimately in clinical practice. We then present a series of practical recommendations to accelerate the study and translation of these techniques.EU COST Action PARENCHIM

    Magnetic resonance imaging biomarkers for chronic kidney disease: a position paper from the European Cooperation in Science and Technology Action PARENCHIMA

    No full text
    Functional renal magnetic resonance imaging (MRI) has seen a number of recent advances, and techniques are now available that can generate quantitative imaging biomarkers with the potential to improve the management of kidney disease. Such biomarkers are sensitive to changes in renal blood flow, tissue perfusion, oxygenation and microstructure (including inflammation and fibrosis), processes that are important in a range of renal diseases including chronic kidney disease. However, several challenges remain to move these techniques towards clinical adoption, from technical validation through biological and clinical validation, to demonstration of cost-effectiveness and regulatory qualification. To address these challenges, the European Cooperation in Science and Technology Action PARENCHIMA was initiated in early 2017. PARENCHIMA is a multidisciplinary pan-European network with an overarching aim of eliminating the main barriers to the broader evaluation, commercial exploitation and clinical use of renal MRI biomarkers. This position paper lays out PARENCHIMA’s vision on key clinical questions that MRI must address to become more widely used in patients with kidney disease, first within research settings and ultimately in clinical practice. We then present a series of practical recommendations to accelerate the study and translation of these techniques
    corecore