161 research outputs found

    Righteous Among the Nations: Honoring Spiritual Resistance in a Time of Pandemics

    Get PDF
    Telling the stories of people who risked their lives to save victims of the Holocaust through music is the focus of a project called The Garden of the Righteous. This project was introduced in a recent article in the Interdisciplinary Journal of Partnership Studies, called “Righteous Among the Nations: Music Without Borders” (Eisner et al., 2019). This piece provides an update on the evolution of the project during a time of pandemics

    New insights into anhydrobiosis using cellular dielectrophoresis-based characterization

    Get PDF
    Late embryogenesis abundant (LEA) proteins are found in desiccation-tolerant species from all domains of life. Despite several decades of investigation, the molecular mechanisms by which LEA proteins confer desiccation tolerance are still unclear. In this study, dielectrophoresis (DEP) was used to determine the electrical properties of Drosophila melanogaster (Kc167) cells ectopically expressing LEA proteins from the anhydrobiotic brine shrimp, Artemia franciscana. Dielectrophoresis-based characterization data demonstrate that the expression of two different LEA proteins, AfrLEA3m and AfrLEA6, increases cytoplasmic conductivity of Kc167 cells to a similar extent above control values. The impact on cytoplasmic conductivity was surprising, given that the concentration of cytoplasmic ions is much higher than the concentrations of ectopically expressed proteins. The DEP data also supported previously reported data suggesting that AfrLEA3m can interact directly with membranes during water stress. This hypothesis was strengthened using scanning electron microscopy, where cells expressing AfrLEA3m were found to retain more circular morphology during desiccation, while control cells exhibited a larger variety of shapes in the desiccated state. These data demonstrate that DEP can be a powerful tool to investigate the role of LEA proteins in desiccation tolerance and may allow to characterize protein-membrane interactions in vivo, when direct observations are challenging

    Outcomes associated with SARS-CoV-2 reinfection in individuals with natural and hybrid immunity

    Get PDF
    BACKGROUND: Studies comparing SARS-CoV-2 reinfection outcomes among individuals with previous infection (natural immunity) and previous infection plus vaccination (hybrid immunity) are limited. METHODS: Retrospective cohort study comparing SARS-CoV-2 reinfection among patients with hybrid immunity (cases) and natural immunity (controls) from March 2020 to February 2022. Reinfection was defined as positive PCR\u3e 90 days after initial laboratory-confirmed SARS-CoV-2 infection. Outcomes included time to reinfection, symptom severity, COVID-19-related hospitalization, critical COVID-19 illness (need for intensive care unit, invasive mechanical ventilation, or death), length of stay (LOS). RESULTS: A total of 773 (42%) vaccinated and 1073 (58%) unvaccinated patients with reinfection were included. Most patients (62.7%) were asymptomatic. Median time to reinfection was longer with hybrid immunity (391 [311-440] vs 294 [229-406] days, p \u3c 0.001). Cases were less likely to be symptomatic (34.1% vs 39.6%, p = 0.001) or develop critical COVID-19 (2.3% vs 4.3%, p = 0.023). However, there was no significant difference in rates of COVID-19-related hospitalization (2.6% vs 3.8%, p = 0.142) or LOS (5 [2-9] vs 5 [3-10] days, p = 0.446). Boosted patients had longer time to reinfection (439 [IQR 372-467] vs 324 [IQR 256-414] days, p \u3c 0.001) and were less likely to be symptomatic (26.8% vs 38%, p = 0.002) compared to unboosted patients. Rates of hospitalization, progression to critical illness and LOS were not significantly different between the two groups. CONCLUSIONS: Natural and hybrid immunity provided protection against SARS-CoV-2 reinfection and hospitalization. However, hybrid immunity conferred stronger protection against symptomatic disease and progression to critical illness and was associated with longer time to reinfection. The stronger protection conferred by hybrid immunity against severe outcomes due to COVID-19 should be emphasized with the public to further the vaccination effort, especially in high-risk individuals

    Collapse to Black Holes in Brans-Dicke Theory: II. Comparison with General Relativity

    Get PDF
    We discuss a number of long-standing theoretical questions about collapse to black holes in the Brans-Dicke theory of gravitation. Using a new numerical code, we show that Oppenheimer-Snyder collapse in this theory produces black holes that are identical to those of general relativity in final equilibrium, but are quite different from those of general relativity during dynamical evolution. We find that there are epochs during which the apparent horizon of such a black hole passes {\it outside\/} the event horizon, and that the surface area of the event horizon {\it decreases\/} with time. This behavior is possible because theorems which prove otherwise assume Rablalb0R_{ab}l^al^b \ge 0 for all null vectors lal^a. We show that dynamical spacetimes in Brans-Dicke theory can violate this inequality, even in vacuum, for any value of ω\omega.Comment: 24 pages including figures, uuencoded gz-compressed postscript, Submitted to Phys Rev

    Bringing 'place' back in: regional clusters, project governance, and new product outcomes

    Get PDF
    We examine new product outcomes in the context of regional clusters. Based on past research on marketing relationships, clusters, and social networks, we propose that the overall configuration of a cluster helps promote particular governance practices among its members. These practices have distinct value-creating properties, and when they are brought to bear on a specific new product development project within a cluster, they promote performance outcomes like product novelty and speed to market. Ultimately, these performance effects are reinforced by the configuration of the cluster itself. In general, we propose that new product outcomes follow from complex interactions between a cluster's macro-level configuration and its micro-level governance processes. More broadly, our framework points to the importance of geographical variables and to the role of “place” in marketing decision-making

    Imitation of β-lactam binding enables broad-spectrum metallo-β-lactamase inhibitors

    Get PDF
    Carbapenems are vital antibiotics, but their efficacy is increasingly compromised by metallo-beta-lactamases (MBLs). Here we report the discovery and optimization of potent broad-spectrum MBL inhibitors. A high-throughput screen for NDM-1 inhibitors identified indole-2-carboxylates (InCs) as potential beta-lactamase stable beta-lactam mimics. Subsequent structure-activity relationship studies revealed InCs as a new class of potent MBL inhibitor, active against all MBL classes of major clinical relevance. Crystallographic studies revealed a binding mode of the InCs to MBLs that, in some regards, mimics that predicted for intact carbapenems, including with respect to maintenance of the Zn(II)-bound hydroxyl, and in other regards mimics binding observed in MBL-carbapenem product complexes. InCs restore carbapenem activity against multiple drug-resistant Gram-negative bacteria and have a low frequency of resistance. InCs also have a good in vivo safety profile, and when combined with meropenem show a strong in vivo efficacy in peritonitis and thigh mouse infection models.Peer reviewe

    Abrasive, Silica Phytoliths and the Evolution of Thick Molar Enamel in Primates, with Implications for the Diet of Paranthropus boisei

    Get PDF
    Background: Primates—including fossil species of apes and hominins—show variation in their degree of molar enamel thickness, a trait long thought to reflect a diet of hard or tough foods. The early hominins demonstrated molar enamel thickness of moderate to extreme degrees, which suggested to most researchers that they ate hard foods obtained on or near the ground, such as nuts, seeds, tubers, and roots. We propose an alternative hypothesis—that the amount of phytoliths in foods correlates with the evolution of thick molar enamel in primates, although this effect is constrained by a species ’ degree of folivory. Methodology/Principal Findings: From a combination of dietary data and evidence for the levels of phytoliths in plant families in the literature, we calculated the percentage of plant foods rich in phytoliths in the diets of twelve extant primates with wide variation in their molar enamel thickness. Additional dietary data from the literature provided the percentage of each primate’s diet made up of plants and of leaves. A statistical analysis of these variables showed that the amount of abrasive silica phytoliths in the diets of our sample primates correlated positively with the thickness of their molar enamel, constrained by the amount of leaves in their diet (R 2 = 0.875; p,.0006). Conclusions/Significance: The need to resist abrasion from phytoliths appears to be a key selective force behind the evolution of thick molar enamel in primates. The extreme molar enamel thickness of the teeth of the East African homini
    corecore