388 research outputs found

    Testing Mundell’s Intuition of Endogenous OCA Theory

    Get PDF
    This paper presents an empirical assessment of the endogenous optimum currency area theory. Frankel and Rose (1998) study the endogeneity of a currency union through the lens of international trade flows. Our study extends Frankel and Rose's model by using FDI flows to test the original theory developed by Mundell in 1973. A gravity model is used to empirically assess the effectiveness of the convergence criteria by examining location specific advantages that guide multinational investment within the European Union. A fixed effects model based on a panel data of foreign direct investment (FDI) flows within the EU-15 shows that horizontal investment promotes the diffusion of the production process across the national border. Specifically, our results suggest that economic convergence ensured by belonging to the common currency area helps double FDI flows.economic integration, gravity model, endogenous optimum currency area

    Bimodality and hysteresis in systems driven by confined L\'evy flights

    Get PDF
    We demonstrate occurrence of bimodality and dynamical hysteresis in a system describing an overdamped quartic oscillator perturbed by additive white and asymmetric L\'evy noise. Investigated estimators of the stationary probability density profiles display not only a turnover from unimodal to bimodal character but also a change in a relative stability of stationary states that depends on the asymmetry parameter of the underlying noise term. When varying the asymmetry parameter cyclically, the system exhibits a hysteresis in the occupation of a chosen stationary state.Comment: 4 pages, 5 figures, 30 reference

    Two Algebraic Process Semantics for Contextual Nets

    No full text
    We show that the so-called 'Petri nets are monoids' approach initiated by Meseguer and Montanari can be extended from ordinary place/transition Petri nets to contextual nets by considering suitable non-free monoids of places. The algebraic characterizations of net concurrent computations we provide cover both the collective and the individual token philosophy, uniformly along the two interpretations, and coincide with the classical proposals for place/transition Petri nets in the absence of read-arcs

    Levy stable noise induced transitions: stochastic resonance, resonant activation and dynamic hysteresis

    Full text link
    A standard approach to analysis of noise-induced effects in stochastic dynamics assumes a Gaussian character of the noise term describing interaction of the analyzed system with its complex surroundings. An additional assumption about the existence of timescale separation between the dynamics of the measured observable and the typical timescale of the noise allows external fluctuations to be modeled as temporally uncorrelated and therefore white. However, in many natural phenomena the assumptions concerning the abovementioned properties of "Gaussianity" and "whiteness" of the noise can be violated. In this context, in contrast to the spatiotemporal coupling characterizing general forms of non-Markovian or semi-Markovian L\'evy walks, so called L\'evy flights correspond to the class of Markov processes which still can be interpreted as white, but distributed according to a more general, infinitely divisible, stable and non-Gaussian law. L\'evy noise-driven non-equilibrium systems are known to manifest interesting physical properties and have been addressed in various scenarios of physical transport exhibiting a superdiffusive behavior. Here we present a brief overview of our recent investigations aimed to understand features of stochastic dynamics under the influence of L\'evy white noise perturbations. We find that the archetypal phenomena of noise-induced ordering are robust and can be detected also in systems driven by non-Gaussian, heavy-tailed fluctuations with infinite variance.Comment: 7 pages, 8 figure

    Escape driven by α\alpha-stable white noises

    Full text link
    We explore the archetype problem of an escape dynamics occurring in a symmetric double well potential when the Brownian particle is driven by {\it white L\'evy noise} in a dynamical regime where inertial effects can safely be neglected. The behavior of escaping trajectories from one well to another is investigated by pointing to the special character that underpins the noise-induced discontinuity which is caused by the generalized Brownian paths that jump beyond the barrier location without actually hitting it. This fact implies that the boundary conditions for the mean first passage time (MFPT) are no longer determined by the well-known local boundary conditions that characterize the case with normal diffusion. By numerically implementing properly the set up boundary conditions, we investigate the survival probability and the average escape time as a function of the corresponding L\'evy white noise parameters. Depending on the value of the skewness β\beta of the L\'evy noise, the escape can either become enhanced or suppressed: a negative asymmetry β\beta causes typically a decrease for the escape rate while the rate itself depicts a non-monotonic behavior as a function of the stability index α\alpha which characterizes the jump length distribution of L\'evy noise, with a marked discontinuity occurring at α=1\alpha=1. We find that the typical factor of ``two'' that characterizes for normal diffusion the ratio between the MFPT for well-bottom-to-well-bottom and well-bottom-to-barrier-top no longer holds true. For sufficiently high barriers the survival probabilities assume an exponential behavior. Distinct non-exponential deviations occur, however, for low barrier heights.Comment: 8 pages, 8 figure

    Oscillations in spectral behavior of total losses (1−R−T) in thin dielectric films

    Get PDF
    We explain reasons of oscillations frequently observed in total losses spectra (1−R−T) calculated on the basis of measurement spectral photometric data of thin film samples. The first reason of oscillations is related to difference in angles of incidence at which spectral transmittance and reflectance are measured. The second reason is an absorption in a thin film. The third reason is a slight thickness non-uniformity of the film. We observe a good agreement between theoretical models and corresponding measurements, which proves above statements on the origins of oscillations in total losses

    Continuous time random walk with correlated waiting times

    Full text link
    Based on the Langevin description of the Continuous Time Random Walk (CTRW), we consider a generalization of CTRW in which the waiting times between the subsequent jumps are correlated. We discuss the cases of exponential and slowly decaying persistent power-law correlations between the waiting times as two generic examples and obtain the corresponding mean squared displacements as functions of time. In the case of exponential-type correlations the (sub)diffusion at short times is slower than in the absence of correlations. At long times the behavior of the mean squared displacement is the same as in uncorrelated CTRW. For power-law correlations we find subdiffusion characterized by the same exponent at all times, which appears to be smaller than the one in uncorrelated CTRW. Interestingly, in the limiting case of an extremely long power-law correlations, the (sub)diffusion exponent does not tend to zero, but is bounded from below by the subdiffusion exponent corresponding to a short time behavior in the case of exponential correlations

    Metal island film-based structures for sensing using spectrophotometry and ellipsometry

    Get PDF
    Metal island films (MIF) are good candidates for sensors due to the strong sensitivity of the localised surface plasmon resonance to the environment refractive index. The strong near field enhancement in the vicinity of the island surface can be even higher if a metal layer (ML) is placed close to a MIF. Structures containing MIF with and without ML are prepared and sensitivities of spectrophotometric and ellipsometric features of the measurements are compared. It is shown that simple MIF is preferable for ellipsometry-based sensing and the one including ML in the case of spectrophotometric measurements
    corecore