13 research outputs found

    Neural mechanisms underlying catastrophic failure in human-machine interaction during aerial navigation

    Get PDF
    Objective. We investigated the neural correlates of workload buildup in a fine visuomotor task called the boundary avoidance task (BAT). The BAT has been known to induce naturally occurring failures of human-machine coupling in high performance aircraft that can potentially lead to a crash; these failures are termed pilot induced oscillations (PIOs). Approach. We recorded EEG and pupillometry data from human subjects engaged in a flight BAT simulated within a virtual 3D environment. Main results. We find that workload buildup in a BAT can be successfully decoded from oscillatory features in the electroencephalogram (EEG). Information in delta, theta, alpha, beta, and gamma spectral bands of the EEG all contribute to successful decoding, however gamma band activity with a lateralized somatosensory topography has the highest contribution, while theta band activity with a frontocentral topography has the most robust contribution in terms of real world usability. We show that the output of the spectral decoder can be used to predict PIO susceptibility. We also find that workload buildup in the task induces pupil dilation, the magnitude of which is significantly correlated with the magnitude of the decoded EEG signals. These results suggest that PIOs may result from the dysregulation of cortical networks such as the locus coeruleus (LC) anterior cingulate cortex (ACC) circuit. Significance. Our findings may generalize to similar control failures in other cases of tight man machine coupling where gains and latencies in the control system must be inferred and compensated for by the human operators. A closed-loop intervention using neurophysiological decoding of workload buildup that targets the LC ACC circuit may positively impact operator performance in such situations.Comment: Manuscript as initially submitted to Journal of Neural Engineering in March, 201

    Layer-specific activation of sensory input and predictive feedback in the human primary somatosensory cortex

    Get PDF
    When humans perceive a sensation, their brains integrate inputs from sensory receptors and process them based on their expectations. The mechanisms of this predictive coding in the human somatosensory system are not fully understood. We fill a basic gap in our understanding of the predictive processing of somatosensation by examining the layer-specific activity in sensory input and predictive feedback in the human primary somatosensory cortex (S1). We acquired submillimeter functional magnetic resonance imaging data at 7T (n = 10) during a task of perceived, predictable, and unpredictable touching sequences. We demonstrate that the sensory input from thalamic projects preferentially activates the middle layer, while the superficial and deep layers in S1 are more engaged for cortico-cortical predictive feedback input. These findings are pivotal to understanding the mechanisms of tactile prediction processing in the human somatosensory cortex

    High-resolution CBV-fMRI allows mapping of laminar activity and connectivity of cortical input and output in human M1

    Get PDF
    Layer-dependent fMRI allows measurements of information flow in cortical circuits, as afferent and efferent connections terminate in different cortical layers. However, it is unknown to what level human fMRI is specific and sensitive enough to reveal directional functional activity across layers. To answer this question, we developed acquisition and analysis methods for blood-oxygen-level-dependent (BOLD) and cerebral-blood-volume (CBV)-based laminar fMRI and used these to discriminate four different tasks in the human motor cortex (M1). In agreement with anatomical data from animal studies, we found evidence for somatosensory and premotor input in superficial layers of M1 and for cortico-spinal motor output in deep layers. Laminar resting-state fMRI showed directional functional connectivity of M1 with somatosensory and premotor areas. Our findings demonstrate that CBV-fMRI can be used to investigate cortical activity in humans with unprecedented detail, allowing investigations of information flow between brain regions and outperforming conventional BOLD results that are often buried under vascular biases

    Layer-dependent activity in human prefrontal cortex during working memory

    No full text
    Working memory involves storing and/or manipulating previously encoded information over a short-term delay period, which is typically followed by a behavioral response based on the remembered information. Although working memory tasks often engage dorsolateral prefrontal cortex, few studies have investigated whether their subprocesses are localized to different cortical depths in this region, and none have done so in humans. Here we use high-resolution functional MRI to interrogate the layer specificity of neural activity during different periods of a delayed-response task in dorsolateral prefrontal cortex. We detect activity time courses that follow the hypothesized patterns: namely, superficial layers are preferentially active during the delay period, specifically in trials requiring manipulation (rather than mere maintenance) of information held in working memory, and deeper layers are preferentially active during the response. Results demonstrate that layer-specific functional MRI can be used in higher-order brain regions to noninvasively map cognitive processing in humans

    Inter-subject correlation during long narratives reveals widespread neural correlates of reading ability

    No full text
    Recent work using fMRI inter-subject correlation analysis has provided new information about the brain's response to video and audio narratives, particularly in frontal regions not typically activated by single words. This approach is very well suited to the study of reading, where narrative is central to natural experience. But since past reading paradigms have primarily presented single words or phrases, the influence of narrative on semantic processing in the brain – and how that influence might change with reading ability – remains largely unexplored. In this study, we presented coherent stories to adolescents and young adults with a wide range of reading abilities. The stories were presented in alternating visual and auditory blocks. We used a dimensional inter-subject correlation analysis to identify regions in which better and worse readers had varying levels of consistency with other readers. This analysis identified a widespread set of brain regions in which activity timecourses were more similar among better readers than among worse readers. These differences were not detected with standard block activation analyses. Worse readers had higher correlation with better readers than with other worse readers, suggesting that the worse readers had “idiosyncratic” responses rather than using a single compensatory mechanism. Close inspection confirmed that these differences were not explained by differences in IQ or motion. These results suggest an expansion of the current view of where and how reading ability is reflected in the brain, and in doing so, they establish inter-subject correlation as a sensitive tool for future studies of reading disorders

    Evaluation of multi-echo ICA denoising for task based fMRI studies: Block designs, rapid event-related designs, and cardiac-gated fMRI

    Get PDF
    Epub ahead of print 27/07/2016Multi-echo fMRI, particularly the multi-echo independent component analysis (ME-ICA) algorithm, has previously proven useful for increasing the sensitivity and reducing false positives for functional MRI (fMRI) based resting state connectivity studies. Less is known about its efficacy for task-based fMRI, especially at the single subject level. This work, which focuses exclusively on individual subject results, compares ME-ICA to single-echo fMRI and a voxel-wise T2⁎ weighted combination of multi-echo data for task-based fMRI under the following scenarios: cardiac-gated block designs, constant repetition time (TR) block designs, and constant TR rapid event-related designs. Performance is evaluated primarily in terms of sensitivity (i.e., activation extent, activation magnitude, percent detected trials and effect size estimates) using five different tasks expected to evoke neuronal activity in a distributed set of regions. The ME-ICA algorithm significantly outperformed all other evaluated processing alternatives in all scenarios. Largest improvements were observed for the cardiac-gated dataset, where ME-ICA was able to reliably detect and remove non-neural T1 signal fluctuations caused by non-constant repetition times. Although ME-ICA also outperformed the other options in terms of percent detection of individual trials for rapid event-related experiments, only 46% of all events were detected after ME-ICA; suggesting additional improvements in sensitivity are required to reliably detect individual short event occurrences. We conclude the manuscript with a detailed evaluation of ME-ICA outcomes and a discussion of how the ME-ICA algorithm could be further improved. Overall, our results suggest that ME-ICA constitutes a versatile, powerful approach for advanced denoising of task-based fMRI, not just resting-state data.This research was possible thanks to the support of the National Institute of Mental Health Intramural Research Program. Portions of this study used the high-performance computational capabilities of the Biowulf Linux cluster at the National Institutes of Health, Bethesda, MD (biowulf.nih.gov). This study is part of NIH clinical protocol number NCT00001360, protocol ID 93-M-0170 and annual report ZIAMH002783-14. Dr. Caballero-Gaudes was supported by the Spanish Ministry of Economy and Competitiveness, through grant PSI 2013-42343 Neuroimagen Multimodal and the Severo Ochoa Programme for Centres/Units of Excellence in R&D (SEV-2015-490)

    Ultra-high resolution blood volume fMRI and BOLD fMRI in humans at 9.4 T: Capabilities and challenges

    Get PDF
    Functional mapping of cerebral blood volume (CBV) changes has the potential to reveal brain activity with high localization specificity at the level of cortical layers and columns. Non-invasive CBV imaging using Vascular Space Occupancy (VASO) at ultra-high magnetic field strengths promises high spatial specificity but poses unique challenges in human applications. As such, 9.4 T B and B inhomogeneities limit efficient blood tagging, while the specific absorption rate (SAR) constraints limit the application of VASO-specific RF pulses. Moreover, short T values at 9.4 T require short readout duration, and long T values at 9.4 T can cause blood-inflow contaminations. In this study, we investigated the applicability of layer-dependent CBV-fMRI at 9.4 T in humans. We addressed the aforementioned challenges by combining multiple technical advancements: temporally alternating pTx B shimming parameters, advanced adiabatic RF-pulses, 3D-EPI signal readout, optimized GRAPPA acquisition and reconstruction, and stability-optimized RF channel combination. We found that a combination of suitable advanced methodology alleviates the challenges and potential artifacts, and that VASO fMRI provides reliable measures of CBV change across cortical layers in humans at 9.4 T. The localization specificity of CBV-fMRI, combined with the high sensitivity of 9.4 T, makes this method an important tool for future studies investigating cortical micro-circuitry in humans
    corecore