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Abstract
Objective. We investigated the neural correlates of workload buildup in a fine visuomotor task
called the boundary avoidance task (BAT). The BAT has been known to induce naturally
occurring failures of human–machine coupling in high performance aircraft that can potentially
lead to a crash—these failures are termed pilot induced oscillations (PIOs). Approach. We
recorded EEG and pupillometry data from human subjects engaged in a flight BAT simulated
within a virtual 3D environment. Main results. We find that workload buildup in a BAT can be
successfully decoded from oscillatory features in the electroencephalogram (EEG). Information
in delta, theta, alpha, beta, and gamma spectral bands of the EEG all contribute to successful
decoding, however gamma band activity with a lateralized somatosensory topography has the
highest contribution, while theta band activity with a fronto-central topography has the most
robust contribution in terms of real-world usability. We show that the output of the spectral
decoder can be used to predict PIO susceptibility. We also find that workload buildup in the task
induces pupil dilation, the magnitude of which is significantly correlated with the magnitude of
the decoded EEG signals. These results suggest that PIOs may result from the dysregulation of
cortical networks such as the locus coeruleus (LC)—anterior cingulate cortex (ACC) circuit.
Significance. Our findings may generalize to similar control failures in other cases of tight man-
machine coupling where gains and latencies in the control system must be inferred and
compensated for by the human operators. A closed-loop intervention using neurophysiological
decoding of workload buildup that targets the LC-ACC circuit may positively impact operator
performance in such situations.

S Online supplementary data available from stacks.iop.org/JNE/13/066005/mmedia
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1. Introduction

Superior human performance in complex tasks such as
piloting a modern jet fighter or driving a Formula 1 car
requires goal-directed navigation while operating within
dynamic physical constraints or error margins. Such perfor-
mance requires a careful balancing of cognitive resources,
maximizing task engagement while keeping autonomic stress
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responses in check. A failure to maintain this balance can
result in catastrophic accidents. For instance, pilot-induced
oscillations (PIO) are a dangerous flight characteristic that can
spontaneously develop during periods of demanding task
performance, e.g., when landing on the deck of a naval air-
craft carrier, and can lead to loss of control and airframe
damage (Hurt 1965).

Although the phenomenon of PIOs has been known in
the flight community ever since the advent of manned flight,
the underlying factors have not been completely understood.
PIOs are defined as unstable oscillations in the longitudinal
motion of an aircraft that are inadvertently caused by the
pilot’s own control input. Traditionally, PIOs have been
attributed to non-optimal coupling between the pilot and the
aircraft. Spontaneous dampened short-period oscillations are
normal, but they can become dangerous if the pilot over-
compensates for small control errors in a way that increases
the amplitude of aircraft oscillations to dangerous levels.
Moreover, a pilot’s unfamiliarity with the ‘feel’ of the aircraft
(e.g., during training or test flights of prototype airplanes) can
increase the likelihood of a PIO (Hurt 1965).

Previous investigations into PIOs have suggested that an
aggressive mindset, high pilot workload, and tight error
margins could be contributing factors (Gray 2005, 2008).
PIOs have been recreated in laboratory conditions using a
‘boundary avoidance task’ (BAT) paradigm, which entails
gradually reducing the permitted margin of error while the
pilot is attempting to closely track a complicated flight tra-
jectory (Gray 2005, Warren 2006, Dotter 2007, Gray 2008).
The BAT paradigm is thought to gradually increase a pilot’s
cognitive workload, arousal, and task engagement, until the
cognitive conditions induce a catastrophic control failure, as
in a PIO. However, what these cognitive conditions are, and
how they mechanistically induce control failures, has not
been determined so far.

We present the first neurophysiological study of PIOs,
where we investigated neural factors underlying PIOs using a
naturalistic 3D BAT paradigm while simultaneously record-
ing EEG and pupillary activity, which was then used to build
a predictive classifier that tracked PIO susceptibility. Our data
suggest that heightened error monitoring and error sensitivity
in the decision-making circuitry of the brain, along with
increased arousal, are coincident with a higher probability
of PIOs.

2. Methods

2.1. Experimental design and stimuli

We used NEDE (Jangraw et al 2014), a 3D virtual environ-
ment created using Unity game development platform (Unity
Technologies, CA), to create a realistic visuomotor task. This
task required maneuvering a high-speed virtual aircraft in
first-person perspective through a series of equidistant glide
boxes that defined a complex undulating trajectory
(figure 1(A)). The environment was rendered on a 30 inch

Apple Cinema HD display (1200×800, 60 Hz) that sub-
tended 30×23 degrees of visual angle.

The virtual aircraft could be maneuvered in the pitch axis
using a flight joystick (Attack 3 Joystick, Logitech S.A.), but
with yaw and roll controls disabled. Glide boxes were placed
every 500 m in the virtual environment, while the aircraft
moved forward with a constant velocity of 250 m s−1. Thus, a
subject had to navigate through a glide box approximately
every 2 s. The trajectory formed by glide boxes was modeled
as a weighted sum of 3 sinusoids of varying periods and
amplitudes in the pitch axis (figure 1(B), supplemental figure
1). Glide box boundaries were task critical; failure to navigate
through even a single glide box ended the flight abruptly. The
task difficulty was manipulated by decreasing the size of the
glide boxes at regular intervals (30 s) during each trial.
Therefore, the user-controlled flight during each trial (max 90
s) could be divided into 3 distinct epochs of identical glide

Figure 1. A) Screenshot of subject’s view during 3D Boundary
Avoidance Task (BAT) experiment. Red squares depict waypoint
boundaries, while the dotted horizontal green line in the center
shows the current heading of the virtual aircraft. B) Full flight
trajectory with the position and the size of the glide boxes; solid blue
line shows the mean path through the center of glide boxes, while
solid red lines denote glide boxes. All dimensions are in meters.
Virtual aircraft moved steadily along the z-axis at 250 m/s and could
be controlled in y (pitch) axis via joystick input. See supplemental
figure 1 stacks.iop.org/JNE/13/066005/mmedia for the other glide
path trajectory used in the experiment.
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box trajectory but with steadily increasing difficulty; this is in
consonance with previous 2D BAT investigations (Dot-
ter 2007). Supplementary figure 1(A) shows a second glide
path trajectory used in the experiment. Each trial started with
2 s of passive fixation (white cross in the middle of a blue
screen) followed by 4 s of passive flight through the virtual
environment towards the first glide box. The subject’s joy-
stick input had consequence only after the virtual aircraft had
passed through the first glidebox in the trial.

The specific characteristics of the aircraft’s response to
control input play a critical role in the causation of PIOs, with
a more oscillatory pitch response as well as response lag
leading to higher chance of a PIO (Dotter 2007). Therefore,
the pitch response of the virtual aircraft in our experiment
incorporated both of these elements; an initial lag (200 ms or
300 ms) with a subsequent oscillatory movement of the air-
craft in response to a step input of the joystick (supplemental
figure 1). The maximum instantaneous and sustained pitch
response was limited to 40 deg s−1 and 24 deg s−1

respectively.

2.2. Subjects

A total of 12 healthy human subjects (ages 19–33, all right
handed, 4 females) with normal or corrected-to-normal vision
participated in the study. Informed consent was obtained from
all subjects in accordance with the guidelines of the Institu-
tional Review Board at Columbia University. Subjects were
provided with a set of written instructions about the task.
They were also familiarized with the virtual aircraft controls
by providing least 60–120 min of flying practice in the NEDE
environment prior to the experiment, either on the same day
as the experiment (3 subjects) or the previous day (9 sub-
jects). Data from 3 subjects were discarded from final analysis
due to system malfunction during the experiment or poor
EEG quality, i.e., inability to get a sufficient number (>1) of
neural independent components after artifact rejection (see
data pre-processing section).

2.3. Data collection

During each trial, subjects’ joystick input and the position of
the aircraft were sampled at 60 Hz. In addition to motor
behavior, subjects’ neurophysiological activity was measured
at 2048 Hz using an EEG system: Biosemi B.V. ActiveTwo
AD-box, 64 Ag–AgCl active electrodes, 10–20 montage. All
electrode offsets were below 40 mV at the beginning of the
experiment. Gaze position and pupil size were recorded using
an EyeLink 1000 eye tracker (SR Research, Ontario, Canada)
at a 1000 Hz sampling frequency. The subject’s head was
stabilized during data collection using a chin and forehead
rest. A 9-point calibration of the eye tracker was performed
before each block of trials, and the subjects were instructed to
not move their head between or during trials (they were
provided regular breaks however). Note: stimulus delivery
and behavior recording, EEG recording, and eye tracking
were performed on 3 different computers simultaneously,
with the respective data synced post-hoc (Jangraw et al 2014).

A total of 32, 40, or 48 flight runs were observed per
subject, with the total experiment time not exceeding 1 h.
Note that given 2 different pitch response delays and 2 dif-
ferent glide-path trajectories, each unique combination of
delay and trajectory was run an equal number of times (e.g.,
10 per combination, for a total of 40 trials per subject). This
was done to maximize the probability of sampling pilot
behavior relevant to PIOs given inter-subject variability in
innate performance on the task. Furthermore, these changes in
control parameters and flight trajectory across blocks of trials
ensured that subjects had minimal learning or ‘muscle
memory’ of the specific experimental parameters, and thus no
steady increase in performance throughout the experiment.

2.4. Data pre-processing

All EEG and pupillometry data were analyzed using the
EEGLAB toolbox (Delorme and Makeig 2004) in MATLAB
(The MathWorks Inc., Natick, MA). The recorded EEG sig-
nals were first re-referenced to the average of all electrodes
and then band-pass filtered to 0.5–100 Hz using a Hamming
windowed FIR filter. The result was then notch filtered at 60
Hz to remove line noise, and finally down-sampled to 256 Hz.
This pre-processing pipeline produced ‘raw’ datasets that
contained signals from neural, ocular, and muscular sources,
as well as non-physiological artifacts.

To isolate the purely neural component of the EEG data,
we used the following procedure: we first reduced the
dimensionality of the EEG data by reconstituting the data
using only the top 20 principal components derived from
principal component analysis (PCA). This dimensionality
reduction step was included in order to better estimate the
independent components associated with infrequent artifacts,
as recommended by (Winkler et al 2011). Thereafter, an
Independent component analysis (ICA) decomposition of the
data was performed using the Infomax algorithm (Bell and
Sejnowski 1995). We then used an ICA-based artifact
removal algorithm called MARA (Winkler et al 2011) to
remove ICs attributed to blinks, horizontal eye movements
(HEOG), muscular activity (EMG), and any loose or highly
noisy electrodes. MARA performs automatic IC classification
using a linear classifier trained on time-series, spectrum, and
scalp map features of a large dataset of labeled IC artifacts.
MARA assigns each IC a probability of being an artifact; we
removed components with probabilities above 0.5.

2.5. EEG data classification

The 64-channel EEG signals recorded during each trial were
split into 1500 ms epochs that were centered at the onset of
each stick movement. Thus, each epoch was construed as a
unique data point for classification. We used spectral power
as the classification feature; therefore, a spectrogram of the
entire continuous data was computed using a sliding short
time Fourier transform (STFT) with a 128 sample Hamming
window and 64 samples of overlap between windows,
yielding five 500 ms windows of frequency data for each
electrode. For further analysis, frequencies were separated
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into bands of interest: delta band consisted of frequencies 1–3
Hz, theta band 4–7 Hz, alpha band 8–15 Hz, beta band 16–31
Hz, and gamma band 32–55 Hz. Spectral information from
56–128 Hz was not used in the classifier.

Classification was performed either using the estimated
spectral power in different frequency bands as features (delta
only, theta only, alpha only, beta only, gamma only; 1 Hz
resolution) or using the power from all frequency bands as
features (all bands, figure 3; 1 Hz resolution). Each data point
was given a class label according to the nearest boundary size
at the time of stick movement during the trial. In one clas-
sification regime, which we call large versus medium/small
(LvMS), the first class includes all stick movements made
during navigation under large boundaries, and the second
class includes all stick movements made during navigation
under medium and small boundaries. In another classification
regime, which we call time-on-task (ToT), data points gen-
erated only within large boundaries were sub-divided
according to their temporal occurrence into two classes (first
half or second half). Finally, the MvS classifier used the
weight vector learned from the LvMS regime to classify
medium versus small classes; this was done in order to show
that the workload component (weight vector) was general-
izable to different absolute boundary sizes. We used N-fold
cross-validation to generate results, usually with both training
and test data derived from the same subject, except in one
case where leave-one-subject-out cross-validation was used to
investigate whether the PIO classifier was generalizable to
novel subjects.

2.5.1. Classification algorithm. The high dimensionality of
data—there are 17 600 features per data point when using all
frequency bands (1–55 Hz)—required the use of a recently
developed algorithm FaSTGLZ (Conroy et al 2013), for
efficient linear classification. FaSTGLZ classifies input data

Îx D with binary class labels { }Î +y 0, 1 by using logistic
regression to create a separating hyperplane in the feature
space that is parameterized by a normal vector

( ) = ¼ Îw w w, , .D
D

1 For the sake of simplicity, the
classifier bias is estimated by incorporating a constant
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A common problem with maximum-likelihood estimators is
the severe over-fitting of high dimensional training data.
FaSTGLZ mitigates such over-fitting by using a penalized
likelihood method based on L2-regularization that seeks to

minimize:

( ) ( ) l= +J w w w Lw.T

If the norm L is any symmetric positive semi-definite matrix
and l a real-valued scalar, then ( )J w would be a convex
function, which is optimized by FaSTGLZ using the
‘alternating direction method of multipliers’ (ADMMs)
procedure. ADMM uses variable splitting to divide the main
optimization into two simpler sub-procedures to minimize a
differentiable objective and to solve a soft-thresholding
operation. This allows the simultaneous training of high
dimensional models across bootstraps, cross-validation folds,
and permutation tests, thus considerably speeding up
classifier learning. Note that all classifiers in our analyses
were learned using 5-fold cross validation with 100 bootstraps
for each fold. The optimal lambda values were chosen using a
parameter sweep of 100 lambda values between 1 × 105 and
1 × 10−5; the value that yielded the highest AUC was used
for further analysis.

The resulting classifier assigns a set of weights to the
feature space used to train the model, such that each
multidimensional data-point is projected onto a scalar
dimension where the two classes are maximally separated.
The classifier features—spectral power of EEG signals—were
z-scored across epochs before classification, and therefore the
learned classifier weights can be interpreted as the normalized
contribution of each frequency at each electrode to the
discriminating hyper plane. A positive weight would imply
that the classification feature is more correlated with low pilot
workload (Larger boundary size) and a negative weight would
imply a stronger correlation with higher pilot workload
(smaller boundary size), therefore describing the direction of
the change in spectral magnitude across boundary size.
Furthermore, the entire set of classifier weights (frequency
band×time point×electrode) can be localized on the scalp,
thus showing the spatial and temporal signature of neural
correlates of workload (figure 3).

We tested the statistical significance of the FaSTGLZ
classifiers relative to chance (AUC=0.5); by using
FaSTGLZ’s built-in permutation setting to create two
permutations per subject per band (with 5-fold cross-
validation and 100 bootstraps in each permutation to find
the average ‘null’ classifier performance). For each band, the
distribution of the 18 ‘null’ classifiers was compared to the
distribution of 9 ‘workload’ classifiers (there are 9 subjects),
to compute a significance level using a t-test and an effect size
using Cohen’s d (Cohen 1988). Note, that we limited to 2
permutations per subject as each computation took several
hours to complete.

3. Results

The behavioral data show that our experimental paradigm
elicited piloting behavior relevant to PIOs, i.e. there is an
increase in the magnitude of PIO features with decreasing
boundary size during the BAT (figure 2). Specifically, a
reduction in boundary size led to quicker task failure (One-
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way repeated-measured ANOVA; F (2, 16)=185.3,
p<0.001), increased magnitude of joystick force (F (2,
16)=63.59, p<0.001), increased frequency of joystick
input (F (2, 16)=22.24, p<0.001), and a rapid increase in
the phase divergence between the input and the response
(F (2, 16)=25.37, p<0.001). Here, the phase divergence
was computed by taking the absolute the difference between
the unwrapped phases of the Hilbert transform of the accu-
mulated joystick input and the current aircraft heading.

We used the spectral power of stick-locked EEG signals
(1500 ms around each stick movement) in different canonical
frequency bands (delta, theta, alpha, beta, and gamma) as
features to classify BAT-induced workload (classes: LvMS
boundaries), and we observed above-chance classification
accuracy (chance AUC=0.5) for all subjects (figure 3(A),
table 1). The choice of the size of the epoch was dictated by
the asymptote of classification accuracy across different
epoch sizes (supplemental figure 2). In order to dissociate the
contribution of different frequency bands to workload

classification, we computed the classification accuracy for
each band separately by filtering EEG signals to the respec-
tive band before classification (see Methods for specific fre-
quencies for each band). The results show that the gamma
band is the most informative band for classifying BAT-
induced workload, as the gamma band classifier approximates
the accuracy of a full spectrum classifier. This difference in
classification accuracy does not seem to be a consequence of
the higher dimensionality of the gamma band, as qualitatively
similar results are produced when classifying using the
average power in each band (supplemental figure 3). We also
find that regularly sampling EEG signals (every 2 s) for
classification did not have a significant qualitative difference
from classifying stick-locked EEG signals (supplemental
figure 4).

The scalp topology of the classifier weights for a full-
spectrum classifier suggests that the contribution of delta,
theta, and gamma band activity to workload classification is
spatially localized. Delta and theta band based classifiers had

Figure 2. Four measures that demonstrate that the BAT paradigm elicited control behavior typical of PIOs; A) a reduction in boundary size
led to a decrease in flight length before failure (missing a glide box), B) more frequent and C) larger joystick inputs, and D) a quicker increase
in the phase divergence between the Hilbert transform of cumulative control input and current aircraft trajectory. Error-bars reflect mean ±
SEM across subjects (N=9).

5

J. Neural Eng. 13 (2016) 066005 S Saproo et al



significant contributions from fronto-central sites, while
gamma band modulation had a predominately lateralized
somatosensory topography (figure 3(B)). Furthermore, the
scalp topology for all frequency bands was robust to the
variation in the temporal overlap of windows used to compute
spectral power using a fast Fourier transform (see supple-
mental figure 5 for a classifier with higher temporal overlap).

We tested the robustness and the generalizability of
classifiers from individual bands. We first estimated the sta-
tistical significance level and effect size in each band for the
classification of MARA cleaned data (see methods). Figure 4

reports these results as uncorrected p-values and Cohen’s d.
Classification results are highly significant, even when
employing a stringent Bonferroni correction of p=0.0083
(p=0.05/6). The corresponding effect sizes are large, all
greater than 0.8, which is a common rule of thumb with
Cohen’s d (Cohen 1988).

When analyzing the effect of the MARA cleaning on the
classification performance, we found that even though the
theta band classifier does not produce the highest classifica-
tion accuracy compared to the gamma band classifier,
MARA-based artifact cleaning of raw EEG affected the theta-
band classifier the least (figure 4). This result is not surprising
because lower frequencies, such as theta, are known to be less
susceptible to potentials from muscle activity (Whitham
et al 2007). Therefore, fronto-central theta activity might
prove to be the best indicator of workload in an operational
scenario (i.e., while flying a real fighter plane), due to the
significant contamination of EEG signals with EMG signals.
Similarly, training the classifier with data from non-test sub-
jects (hold-one-subject-out cross-validation) impacted the
accuracy of theta band classifier the least, further attesting to
its generalizability (figure 5). That said, including lateralized
gamma band signals in a real-world classifier might prove to
be advantageous as they could reflect increased grip on the
joystick that is indicative of task-related stress (Goncharova
et al 2003). In addition, it should be noted that sampling
joystick-locked events has a tendency to produce overlapping
epochs of data—with varying degrees of overlap—that can
inflate classification accuracy due to non-independence
issues. However, we found that in practice the impact on
accuracy due to occasional non-independent samples was
minimal (supplemental figure 6).

Workload can build up due to sustained focal attention
required by the task, which would be unrelated to boundaries
in the BAT scenario. However, we find that the contribution
of ToT component to classifier performance for our data was
not enough to explain the steadily increasing EEG signatures
of workload in our BAT paradigm (figure 6, supplemental
figure 7). Furthermore, the LvMS classifier (classes: large
versus medium/small boundaries; data from medium and
small boundaries were collapsed into a single class) could
also reliably distinguish medium from small boundary con-
ditions (MvS). This suggests that our assessed neural corre-
lates (vector of weights normal to the classifying hyperplane)
are independent of absolute boundaries and can reliably
predict a continuum of workload states. More importantly,
data suggest that neural correlates derived from laboratory
BAT experiments can be effectively used to provide con-
tinuous feedback about pilot workload and PIO tendency in
real-time (figure 7).

Although, we trained classifiers to discriminate EEG
signals based on boundary size, we demonstrate that the
classifier output can also track PIO tendency. We estimated
PIO tendency by creating a metric: the amplitude of the
Hilbert transform of band-passed stick movement (0.3–1.8
Hz, range that is typical of PIOs; Tian et al 2006, Rzu-
cidło 2007). We then separated the trials into 4 bands of
increasing PIO tendency according to the magnitude of PIO

Figure 3. A) Area under the receiver operating characteristic curve
(AUC) for all subjects (in descendingorder of ‘All Bands’ classifier
AUC), when using information from all spectral bands for
classification(‘All Bands’), as well as when using only individual
bands (delta, theta, alpha, beta, or gamma).Classification was
performed using 64-channel MARA-cleaned EEG signals —1.5s
epochs around eachjoystick movement — that were labeled
according to the size of the nearest glide path boundary at the time of
their generation. B) Subject-averaged scalp distribution of normal-
ized weights for the classifer that best separated Large boundary
from Medium and Small boundaries (scalp map corresponds to
‘Bands’ classifier in panel A). Delta and theta band activity from
fronto-centralelectrodes, as well as significant gamma band activity
from a lateralized somatosensory topography, seemsmost indicative
of higher workload induced by smaller boundaries.
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measure in the last 5 s of a trial, and compared highest to
lowest band (Q1: band lower than 1st quartile; Q3: band
higher than 3rd quartile). We find that there is a significant
difference between time-averaged classifier output that leads
up to a PIO event towards the end of the trial (Q3), compared
to trials that did not end in a PIO (Q1), with the temporal
trend showing steady divergence (figure 8).

In addition to EEG, we collected pupillometry data while
the subjects performed the experimental task. Data show that
subjects’ pupils dilate with a decrease in boundary size
(figure 9(A)), directly implicating mental load and arousal
(Murphy et al 2011). We find a significant correlation
between EEG-derived classifier output and pupil size for a
full spectrum classifier (figure 9(B), one sample t-test; t
(8)=−2.41, p=0.043). More importantly, we find a sig-
nificant increase in the correlation between the output of the
theta band classifier—with fronto-central topography—and
the pupil size with a decrease in boundary size during BAT
(large versus medium boundaries), suggesting a close anterior
cingulate cortex (ACC)—locus coeruleus norepinephrine
(ACC-LC-NE) interaction during induced workload buildup
(One-way repeated-measures ANOVA; F (1, 8)=8.08,

p=0.022). This change in correlation was not observed with
the full-spectrum classifier (F (1, 8)=0.02, p=0.88).

4. Discussion

We performed the first neurophysiological investigation into
the phenomenon of PIOs, using a BAT in a virtual reality
environment. We find that our task is able to gradually induce
cognitive workload that in some cases causes PIO-like
behavior. Furthermore, we find robust EEG signatures of
workload in different spatio-spectral bands, with fronto-

Table 1. Mean area-under-curve (AUC) values for workload classifiers (Classes: large versus medium/small boundaries) using different
spectral content (mean±SEM).

All bands Delta Theta Alpha Beta Gamma

Stick locked classifier 0.75±0.02 0.56±0.01 0.57±0.02 0.59±0.02 0.65±0.03 0.73±0.02
Regularly sampled classifier 0.75±0.02 0.57±0.01 0.58±0.02 0.61±0.02 0.66±0.03 0.72±0.03

Figure 4. Effect of artifact removal, using MARA algorithm, on
classification accuracy (Large vs Medium/Small) when using
information all bands or when using individual bands. MARA
algorithm classifies ICA components in the data as artifact based on
a preexisting labeled set of artifactual ICs, including those for eye
movements, muscle movements, and noisy electrodes. p values and
Cohen’s d show significance and effect size relative to chance
classification performance for the MARA cleaned data. Error-bars
reflect mean ± SEM across subjects. Paired t-tests are done to show
the effect of the MARA cleaning on the classification performance
(comparison of MARA vs. No MARA results); * p<0.01, **

p<0.001. Figures 3, 5-9 show results from MARA cleaned data.

Figure 5. A) Comparison of classification accuracy (Large vs
Medium/Small) when using ‘Within subject’ k-fold cross-validation
or when using ‘Hold Subject Out’ cross-validation. Error-bars reflect
mean ± SEM across subjects. Paired t-test; * p<0.05, ** p<0.01 B)
Subject-averaged scalp distribution of normalized weights for the
classifying hyperplane that best separated Large boundary from
Medium and Small boundaries for ‘Hold Subject Out’ classification
(scalp map corresponds to ‘All Bands’ classifier in panel A).
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central theta band the most robust, in terms of being differ-
entiable from potential artifacts. We also find a significant
correlation between this EEG activity and pupil dilation due
to BAT induced workload. Below we discuss these results
within the context of specific circuits in the brain and also
possible broader implications of our findings.

Neural processes underlying cognitive workload have
been studied extensively—especially using EEG measures—
in behavioral contexts where workload is associated with
working memory processes such as recall in n-back tasks
(Brouwer et al 2012, Hogervorst et al 2014, Muhl et al 2014,
Roy et al 2015). In contrast, our results are unique in that the
workload induction in BAT should not be attributed to
working memory, but to continuous error monitoring and
calibration of motor output due to the very nature of the task.
Furthermore, the steadily decreasing safety critical boundaries
make the source of workload in BAT quite distinct from those
in previous studied machine control tasks, such as driving
(Dijksterhuis et al 2013) and flight cockpit management
(Wilson and Russell 2003). As pilots navigate under tighter
boundary conditions, the perception–action cycles become
temporally shorter, which should require more cognitive
resources and induce a subjective feeling of higher ‘work-
load’. Thus, a neural explanation of workload in BAT would
primarily involve regions and circuits underlying error mon-
itoring and cognitive control.

The encoding and regulation of error monitoring has
typically been associated with the ACC, which is believed to
be a key brain area for cognitive control and storing of pre-
dictive models of our environment (Tervo et al 2014). The
region ACC is believed to be at least partially modulated by

the locus coeruleus, a tiny nucleus in the dorsal pons, reg-
ulating arousal levels in the brain via the neurotransmitter
norepinephrine (Aston-Jones and Cohen 2005). The link
between arousal state and task performance has been shown
to be nonlinear (Aston-Jones and Cohen 2005, Gompf
et al 2010). For example, the Yerkes–Dodson curve posits
that a mid-level arousal state is optimal for task performance,
though this ‘mid-level’ is highly task and context dependent.
Therefore, the LC-ACC circuit is of particular interest in
decision-making under dynamic constraints (e.g., flying an
aircraft or driving a vehicle) since dynamically adapting
motor control strategies based on assessment of current per-
formance and upcoming task constraints is often key to
optimal performance.

Recent work in animal models has shown a tight cou-
pling between the LC- norepinephrine system (LC-NE) and
the ACC when animals must dynamically switch between
task-based models (Tervo et al 2014). Specifically, the rats in
the experiment faced a computer opponent in a competitive
virtual task, where the computer was programmed to counter-
predict a rat’s behavior. When the LC-NE input to the ACC
increased, the rats were less adept at incorporating environ-
mental feedback into their internal model of choice and pre-
diction. However, when the LC-NE input to ACC was
suppressed, the rats were able to utilize feedback from the
environment more effectively and therefore better model the
computer’s counter prediction to increase their performance
and reward.

Though we cannot directly measure LC-NE activity with
scalp EEG, several studies have shown that pupil dilation can
be used as a proxy for activity in the LC and thus provides
some information of the state of arousal of an individual
(Gompf et al 2010, Joshi et al 2016). ACC, on the other hand,
is more accessible via EEG, with fronto-central theta activity
having been identified as a correlate of ACC activation
(Cavanagh and Frank 2014). Thus, by linking EEG activity
with pupillary measures, one can potentially, non-invasively,
infer the dynamics of the LC-ACC circuit during a complex
and dynamic task.

Our results, therefore, can be interpreted within the
context of the aforementioned study of LC-ACC interaction
(Tervo et al 2014), and may provide a mechanistic explana-
tion for PIOs. An increase in observed fronto-central theta
band power, which in turn is correlated with pupil dilation in
our study, could be an indication of the subject switching into
a behavioral model associated with high workload state. This
might suggest that in a cognitive state associated with high
workload, there is an increase in LC-NE input to ACC, which
might lead to the subjects sticking with their current internal
model of aircraft control, even when the boundaries have
changed. This sub-optimal control model might lead to PIOs
in certain instances. In contrast, a better strategy would be to
incorporate environmental feedback and switch to a different
internal model of aircraft control that is better adapted to
steering within narrow boundaries.

This interpretation of our results provides an interesting
possibility for mitigating PIOs: since the LC-NE system is
associated with arousal, using feedback from a hybrid BCI

Figure 6. Subject-wise classification accuracy: LvMS, where data
from Medium and Small boundaries were combined into a single
training class, and the classifier learned to distinguish Large from
Medium/Small boundary classes. MvS, used the weights learned
from LvMS classifier and classified Medium vs Small boundary
classes. Time on Task, when classifying data from the Large
boundary class that is labeled according to temporal occurrence -
first half or second half of flight within large boundaries.
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system (hBCI) to dynamically adjust arousal levels may
regulate LC-NE input to the ACC, allowing updates to the
internal model of the pilot based on the environmental feed-
back. For example, a hBCI that integrates pupillometry and
EEG features could predict when a pilot is entering a state that
will likely generate a PIO (as in figure 8, red curve), where-
upon feedback, in the form of a continuous auditory stimulus
with calming influence, could be delivered to reduce arousal
level and thus reduce LC-NE input to ACC. We hypothesize
that an optimally calibrated feedback loop would help reg-
ulate LC-ACC interaction, resulting in piloting behavior
improvements.

Beyond cases of vehicular control, there is a large class
of electronic games, such as the highly popular ‘flappy bird’,
that resemble a BAT; the player controls a character moving
at constant speed, avoiding obstacles and boundaries that
become tighter as the game progresses. The objective in these
games is to go as far along the course as possible. These
games are known to be highly addictive, with the gamers
repeatedly replaying the course from the beginning after a
failure, trying to increase the distance they come along a
course before failure. Although a recent attempt has been
made to quantify the optimal parameters for such games such
that they remain highly playable (Isaksen et al 2015), the
cognitive factors underlying their addictive nature remains
unknown. Our results from the BAT investigation suggests
that not only does arousal level (as evidenced by pupil dila-
tion) increase progressively as the boundaries decrease and
therefore difficulty increases, but there is a dramatic increase
in the cognitive workload due to task monitoring (as evi-
denced by theta band activity over fronto-central sites). This
presents a peculiar hypothesis: perhaps the addictive nature of

Figure 7. A representative trial flight showing the measured behavioral and neural markers across time. Top to bottom: Flight path, control
stick movements, and z-scored classifier output y . Potential feedback to the pilot is constructed by interpolating and filtering classifier output
(cubic spline interpolation, then 3rd order Butterworth filter with 0.1 Hz cutoff to smooth output over 10s)

Figure 8. Output of workload classifier tracks PIO susceptibility in
real-time. PIO susceptibility was estimated using a metric (0,1)
based on joystick input (see Results). The last 5 seconds of each trial
i that ended in the medium sized ring (40-60s after first ring is
crossed) were analyzed for PIO susceptibility; maximum value Mi

and time of maxima Ti were computed. ‘Q3 PIO’ reflects the
interpolated classifier output in the 30 seconds leading up to Ti
averaged over all trials where Mi > 0.75–i.e. greater than Q3. ‘Q1
PIO’ reflects similar information for all trials where Mi < 0.25–i.e.
less than Q1. This data suggests that even though the LvMS
classifier only learns to differentiate EEG signals from different
boundary conditions during trials, it can also differentiate piloting
behavior. Note that data from -5s to 0s in the figure is guaranteed to
reflect classifier output generated only within Medium glide path
boundaries. Error-bars reflect mean ± SEM across subjects. Bottom
band (gray) shows time-points where a paired t-test indicated
significant difference between the two curves (p<0.05); black shows
regions that passed Bonferroni correction (i.e. p<0.000028).
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such games comes from the ability to progressively achieve
higher arousal levels, as the subjects improve their ability to
increase the ACC-LC coupling to move to the more optimal
position along the Yerkes–Dodson curve. Indeed, our data
show that the correlation between fronto-central theta band
activity (stand in for ACC) and pupil dilation (stand in for LC
activity) increases during the course of the experiment.

Finally, our results have relevance beyond the world of
tracking physical boundaries as in gaming or vehicular
navigation; humans frequently engage in sustained percep-
tion–decision–action loops that involve goal and error track-
ing under dynamic constraints. For example, a financial
portfolio manager has to track changing market conditions
and reallocate stocks so as to maximize portfolio value while
managing risk within prescribed boundaries. Project man-
agers must regularly track project progress and deal with
exigencies so as to ensure high quality of work while
avoiding unacceptable delays in completion. Viewed gen-
erally, these examples are illustrative of rapid decision-mak-
ing that involves tracking optimal performance while
avoiding frequently changing ‘failure’ boundaries. As with
top-gun pilots, Formula 1 champions, top fund managers, and
top project managers, the burning question is ‘What neural
markers differentiate stellar performance (and performers)
from catastrophic failures under challenging conditions?’ Our
results suggest that the key insight may lay in the interaction
of neural circuitry that is engaged in error monitoring, deci-
sion-making, and regulating arousal.
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