19,143 research outputs found

    On the Penrose Inequality for general horizons

    Get PDF
    For asymptotically flat initial data of Einstein's equations satisfying an energy condition, we show that the Penrose inequality holds between the ADM mass and the area of an outermost apparent horizon, if the data are restricted suitably. We prove this by generalizing Geroch's proof of monotonicity of the Hawking mass under a smooth inverse mean curvature flow, for data with non-negative Ricci scalar. Unlike Geroch we need not confine ourselves to minimal surfaces as horizons. Modulo smoothness issues we also show that our restrictions on the data can locally be fulfilled by a suitable choice of the initial surface in a given spacetime.Comment: 4 pages, revtex, no figures. Some comments added. No essential changes. To be published in Phys. Rev. Let

    Development of code evaluation criteria for assessing predictive capability and performance

    Get PDF
    Computational Fluid Dynamics (CFD), because of its unique ability to predict complex three-dimensional flows, is being applied with increasing frequency in the aerospace industry. Currently, no consistent code validation procedure is applied within the industry. Such a procedure is needed to increase confidence in CFD and reduce risk in the use of these codes as a design and analysis tool. This final contract report defines classifications for three levels of code validation, directly relating the use of CFD codes to the engineering design cycle. Evaluation criteria by which codes are measured and classified are recommended and discussed. Criteria for selecting experimental data against which CFD results can be compared are outlined. A four phase CFD code validation procedure is described in detail. Finally, the code validation procedure is demonstrated through application of the REACT CFD code to a series of cases culminating in a code to data comparison on the Space Shuttle Main Engine High Pressure Fuel Turbopump Impeller

    Isometric Representations of Totally Ordered Semigroups

    Get PDF
    Let S be a subsemigroup of an abelian torsion-free group G. If S is a positive cone of G, then all C*-algebras generated by faithful isometrical non-unitary representations of S are canonically isomorphic. Proved by Murphy, this statement generalized the well-known theorems of Coburn and Douglas. In this note we prove the reverse. If all C*-algebras generated by faithful isometrical non-unitary representations of S are canonically isomorphic, then S is a positive cone of G. Also we consider G = Z\times Z and prove that if S induces total order on G, then there exist at least two unitarily not equivalent irreducible isometrical representation of S. And if the order is lexicographical-product order, then all such representations are unitarily equivalent.Comment: February 21, 2012. Kazan, Russi

    Compression and diffusion: a joint approach to detect complexity

    Full text link
    The adoption of the Kolmogorov-Sinai (KS) entropy is becoming a popular research tool among physicists, especially when applied to a dynamical system fitting the conditions of validity of the Pesin theorem. The study of time series that are a manifestation of system dynamics whose rules are either unknown or too complex for a mathematical treatment, is still a challenge since the KS entropy is not computable, in general, in that case. Here we present a plan of action based on the joint action of two procedures, both related to the KS entropy, but compatible with computer implementation through fast and efficient programs. The former procedure, called Compression Algorithm Sensitive To Regularity (CASToRe), establishes the amount of order by the numerical evaluation of algorithmic compressibility. The latter, called Complex Analysis of Sequences via Scaling AND Randomness Assessment (CASSANDRA), establishes the complexity degree through the numerical evaluation of the strength of an anomalous effect. This is the departure, of the diffusion process generated by the observed fluctuations, from ordinary Brownian motion. The CASSANDRA algorithm shares with CASToRe a connection with the Kolmogorov complexity. This makes both algorithms especially suitable to study the transition from dynamics to thermodynamics, and the case of non-stationary time series as well. The benefit of the joint action of these two methods is proven by the analysis of artificial sequences with the same main properties as the real time series to which the joint use of these two methods will be applied in future research work.Comment: 27 pages, 9 figure

    First Structure Formation: A Simulation of Small Scale Structure at High Redshift

    Get PDF
    We describe the results of a simulation of collisionless cold dark matter in a LambdaCDM universe to examine the properties of objects collapsing at high redshift (z=10). We analyze the halos that form at these early times in this simulation and find that the results are similar to those of simulations of large scale structure formation at low redshift. In particular, we consider halo properties such as the mass function, density profile, halo shape, spin parameter, and angular momentum alignment with the minor axis. By understanding the properties of small scale structure formation at high redshift, we can better understand the nature of the first structures in the universe, such as Population III stars.Comment: 31 pages, 14 figures; accepted for publication in ApJ. Figure 1 can also be viewed at http://cfa-www.harvard.edu/~hjang/research

    Photoproduction off the nucleon revisited: Evidence for a narrow N(1688) resonance?

    Full text link
    Revised analysis of ÎŁ\Sigma beam asymmetry for the η\eta photoproduction on the free proton reveals a structure at W∌1.69W\sim 1.69 GeV. Fit of the experimental data based on the E429 solution of the SAID partial wave analysis suggests a narrow (Γ≀25\Gamma \leq 25 MeV) resonance. Possible candidates are P11,P13P_{11}, P_{13}, or D13D_{13} resonances. The result is considered in conjunction with the recent evidence for a bump-like structure at W∌1.67−1.68W\sim 1.67 - 1.68 GeV in the quasi-free η\eta photoproduction on the neutron.Comment: Contribution to the Workshop on the Physics of the Excited Nucleons NSTAR2007, Bonn, Germany, Sept. 5 - 8 2007. To be published in Eur.Phys.J.

    Blowup of Jang's equation at outermost marginally trapped surfaces

    Get PDF
    The aim of this paper is to collect some facts about the blowup of Jang's equation. First, we discuss how to construct solutions that blow up at an outermost MOTS. Second, we exclude the possibility that there are extra blowup surfaces in data sets with non-positive mean curvature. Then we investigate the rate of convergence of the blowup to a cylinder near a strictly stable MOTS and show exponential convergence near a strictly stable MOTS.Comment: 15 pages. This revision corrects some typo

    One-Dimensional Dispersive Magnon Excitation in the Frustrated Spin-2 Chain System Ca3Co2O6

    Full text link
    Using inelastic neutron scattering, we have observed a quasi-one-dimensional dispersive magnetic excitation in the frustrated triangular-lattice spin-2 chain oxide Ca3Co2O6. At the lowest temperature (T = 1.5 K), this magnon is characterized by a large zone-center spin gap of ~27 meV, which we attribute to the large single-ion anisotropy, and disperses along the chain direction with a bandwidth of ~3.5 meV. In the directions orthogonal to the chains, no measurable dispersion was found. With increasing temperature, the magnon dispersion shifts towards lower energies, yet persists up to at least 150 K, indicating that the ferromagnetic intrachain correlations survive up to 6 times higher temperatures than the long-range interchain antiferromagnetic order. The magnon dispersion can be well described within the predictions of linear spin-wave theory for a system of weakly coupled ferromagnetic chains with large single-ion anisotropy, enabling the direct quantitative determination of the magnetic exchange and anisotropy parameters.Comment: 7 pages, 6 figures including one animatio

    B -> Xs l_i^+ l_j^+ Decays with R-parity Violation

    Full text link
    We derive the upper bounds on certain products of R-parity- and lepton-flavor-violating couplings from B \ra X_s {l_i}^+ {l_j}^- decays. These modes of B-meson decays can constrain the product combinations of the couplings with one or more heavy generation indices which are comparable with or stronger than the present bounds. From the studies of the invariant dilepton mass spectrum and the forward backward asymmetry of the emitted leptons we note the possibility of detecting R-parity-violating signals even when the total decay rate due to R-parity violating couplings is comparable with that in the standard model and discriminating two types of R-parity-violating signals. The general expectation of the enhancement of the forward backward asymmetry of the emitted leptons in the minimal supersymmetric standard model with R-parity may be corrupted by R-parity violation.Comment: 10 pages, Revtex, 1 table and 2 figure
    • 

    corecore