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ISOMETRIC REPRESENTATIONS OF TOTALLY

ORDERED SEMIGROUPS

M.A.AUKHADIEV AND V.H.TEPOYAN

Abstract. Let S be a subsemigroup of an abelian torsion-free
group G. If S is a positive cone of G, then all C*-algebras generated
by faithful isometrical non-unitary representations of S are canon-
ically isomorphic. Proved by Murphy, this statement generalized
the well-known theorems of Coburn and Douglas. In this note we
prove the reverse. If all C*-algebras generated by faithful isomet-
rical non-unitary representations of S are canonically isomorphic,
then S is a positive cone of G. Also we consider G = Z × Z and
prove that if S induces total order on G, then there exist at least
two unitarily not equivalent irreducible isometrical representation
of S. And if the order is lexicographical-product order, then all
such representations are unitarily equivalent.

1. Introduction and preliminaries

Within this paper S is a subsemigroup of an additive abelian torsion-
free group G with zero. S induces a partial order on G: a ≺ b if there
exists c ∈ S such that a + c = b. Semigroup S induces full order on
G, i.e. for any a, b ∈ S either a ≺ b or b ≺ a, if G = S ∪ (−S) and
S ∩ (−S) = {0}. In this case write S = G+ – a positive cone of G.
Each semigroup S, which doesn’t contain groups, is contained in some
positive cone G+. This follows from the axiom of choice.

Let G be an abelian totally ordered group and S – subsemigroup of
G+, which doesn’t contain groups. We denote by ∆S a set of unitary
equivalence classes of faithful irreducible non-unitary isometrical rep-
resentations of semigroup S. For V ∈ ∆S define SV as a semigroup
generated by operators Va and V ∗

b , where a, b ∈ S and Va = V (a).
An inverse semigroup P is a semigroup, such that each element x

has a unique inverse element x∗, which satisfies the following:

xx∗x = x, x∗xx∗ = x∗ (1)

Definition 1.1. We call the representation V ∈ ∆S inverse, if SV is

an inverse semigroup.

In the well-known work [2] Coburn proved that all isometric repre-
sentations of semigroup N generate canonically isomorphic C∗-algebras.

Key words and phrases. totally ordered semigroup, group, inverse semigroup,
regular representation, isometric representation.
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2 M.A.AUKHADIEV AND V.H.TEPOYAN

The same was proved by Douglas [3] for positive cones in R and by Mur-
phy [8] for positive cones of abelian totally ordered groups. In section
2 we show that every semigroup S has at least one inverse represen-
tation. Therefore all faithful isometric representations of positive cone
are inverse.

S.A.Grigoryan assumed that all representations in ∆S are inverse if
and only if S is a totally ordered semigroup, i.e. S is a positive cone
of some group. We prove this hypothesis in section 2.

In section 3 we prove that if S induces full archimedian order on
Z × Z, then it has at least two unitarily not equivalent irreducible
isometric representations. In case S induces a total lexicographical-
product order, all such representations are unitarily equivalent.

2. Inverse representations

Regular isometric representation is a map V : S → B(l2(S)), a 7→ Va,
defined as follows:

(Vaf)(b) =

{
f(c), if b = a+ c for some c ∈ S;

0, otherwise

C∗-algebra generated by regular isometric representation of semi-
group S is called a reduced semigroup C∗-algebra, denoted by C∗

red(S)
[6].

A finite product of operators of the form Va and V ∗
b , a, b ∈ S is called

a monomial. An index of monomial W = Va1V
∗
a2
Va3 ...V

∗
an

is an element
of group Γ = S − S, equal to

indW = (a2 + a4 + ... + an)− (a1 + a3 + ... + an−1),

when n is even [4]. For odd n we have:

W = Va1V
∗
a2
Va3 ...Van ,

indW = (a2 + a4 + ... + an−1)− (a1 + a3 + ... + an).

It is clear that
ind(W1 ·W2) = indW1 + indW2.

Due to definition, monomials form a semigroup, which we denote by
SV .

Lemma 2.1. The regular isometric representation of S is inverse.

Proof. Consider a family {ea}a∈S of elements in l2(S) such that ea(b) =
δa,b. This is a natural orthonormal basis in l2(S). Every monomial W
in SV satisfies the following:

Web = eb−d or 0, where d = indW.

Note that WW ∗ and W ∗W are monomials also, besides

ind(W ·W ∗) = ind(W ∗ ·W ).
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By virtue of Lemma 2.2 in [5], WW ∗ and W ∗W are orthogonal pro-
jections. This implies immediately that W = WW ∗W and W ∗ =
W ∗WW ∗. Therefore, an inverse element for W is W ∗.

�

Lemma 2.2. There exists at least one noninverse representation in

∆S for a semigroup S ( G+.

Proof. Take a regular representation V of S in B(l2(S)), a 7→ Va. Since
S is not equal to G+, there exist incomparable elements c, d ∈ S, i.e.
c − d /∈ S and d − c /∈ S. Consider function gc,d = ec+ed√

2
in l2(S).

Denote by H a Hilbert space generated by linear span of {Vagc,d}a∈S .

Note that Vagc,d = gc+a,d+a. Define representation Ṽ of semigroup S on

H , a 7→ Ṽa, by setting Ṽa = VaP , where P : l2(S) → H is a projection
on H .

This representation is faithful isometric due to its definition.
Let us show that

ṼcṼ
∗
c ṼdṼ

∗
d 6= ṼdṼ

∗
d ṼcṼ

∗
c . (2)

Consider Ṽ ∗
d g2c,c+d and find such elements x ∈ S that

(Ṽ ∗
d g2c,c+d, gc+a,d+a) = 0.

To this end, calculate

(Ṽ ∗
d g2c,c+d, gc+a,d+a) = (g2c,c+d, gc+d+a,2d+a) =

= (
e2c+ec+d√

2
,
ec+d+a+e2d+a√

2
) =

= 1
2
((e2c, ec+d+a) + (e2c, e2d+a) + (ec+d, ec+d+a) + (ec+d, e2d+a)).

(3)

First and last summands are equal to zero, since c and d are incom-

parabe. Therefore the scale product (Ṽ ∗
d g2c,c+d, gc+a,d+a) is not equal to

zero if and only if either a = 0 or a = 2c−2d. Note that element 2c−2d
may not be contained in semigroup S. Despite this fact we continue
the proof assuming 2c− 2d ∈ S. One can easily see that without this
assumption the proof is trivial.

Denote by H0 a Hilbert space in H generated by elements of the
following set

{gc+a,d+a| a 6= 0, a 6= 2c− 2d}

Repeating the same arguments as above one can show that gc,d and
g3c−d,2c−d are mutually orthogonal, and both are orthogonal to H0.
Consequently, codimH0 = 2 and the elements gc,d and g3c−d,2c−d form
an orthonormal basis in H⊥

0 ⊂ H . Thus,

H = H0 ⊕ Cgc,d ⊕ Cg3c−d,2c−d,

and from equation (3) we have

V ∗
d g2c,c+d =

1

2
(gc,d + g3c−2d,2c−d).
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For futher be noted, the assumption 2c−2d ∈ S implies that 2d−2c is
not contained in semigroup S. Otherwise G+ would contain non-trivial
group, which is impossible. Therefore, due to symmetry we get

V ∗
c gc+d,2d =

1

2
gc,d.

Thus,

ṼcṼ
∗
c ṼdṼ

∗
d g2c,c+d =

1

2
ṼcṼ

∗
c Ṽd(gc,d + g3c−2d,2c−d) =

=
1

2
(ṼcṼ

∗
c gc+d,2d + ṼcṼ

∗
c g3c−d,2c) =

=
1

4
Vcgc,d +

1

2
Vcg2c−d,c =

1

4
g2c,c+d +

1

2
g3c−d,2c.

On the other hand,

ṼdṼ ∗
d ṼcṼ ∗

c g2c,c+d = ṼdṼ ∗
d g2c,c+d =

1

2
gc+d,2d +

1

2
g3c−d,2c.

Consequently, we get inequality (2)
�

Theorem 2.1. The following properties of semigroup S are equivalent

(1) S = G+;

(2) all representations in ∆S are canonically isomorphic;

(3) all representations in ∆S are inverse;

(4) for any representation V in ∆S and for any a, b ∈ S the follow-

ing equality is satisfied

VaV
∗
a VbV

∗
b = VbV

∗
b VaV

∗
a .

Proof. (1)⇒(2) was proved by Murphy [8].
Let us show implication (2)⇒(3). Suppose all representations in

∆S are canonically isomorphic and S ⊂ G+. Consider representation
V : S → l2(G+), a 7→ Va, defined by

Vaeb = ea+b,

where {ea}a∈G+ is an orthonormal basis in l2(G+). For any a, b, c ∈ S
if a ≺ b or a = b we have V ∗

a Vbec = ec+b−a. Since all elements in G+

are pairwise comparable, we have two cases. If a ≺ b, then operator
V ∗
a Vb is isometric, otherwise (b ≺ a) operator (V ∗

a Vb)
∗ is isometric.

Consequently, semigroup SV is inverse.
Implication (3)⇒(4) concerns only inverse semigroups, and it was

proved in [1].
Lemma 2.2 implies (4)⇒(1).

�

Corollary 2.1. The C∗-algebras C∗(S) and C∗
red(S) are isomorphic if

and only if S is totally ordered, where C∗(S) is a universal enveloping

C∗-algebra, generated by all isometric representations of semigroup S
[9].
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In particular case S = Z+ this statement implies that the alge-
bras C∗(Z+) and C∗

red(Z
+) are isomorphic. This result was proved

by Coburn in his well-known work [2]. As an example of the converse
to this statement take S = Z+\ {1}. Due to Corollary 2.1, the algebras
C∗(S) and C∗

red(S) are not isomorphic. The same was shown in [7],
and this case was studied in details in [10].

3. C∗-algebras generated by totally ordered semigroup

in Z× Z

Consider group G = Z × Z. Total order on G is equivalent to
straight line dividing it into two parts. It implies two cases. The
first case: the line meets the point (0, 0) and doesn’t meet any inte-
gers. Such line is characterized by equation x + αy = 0, where α is
irrational. The second case: the line meets integers, i.e. x + αy =
0, for rational α. The order induced by the first line is archime-
dian. In the second case we may consider G = S ∪ (−S), where
S = {(n,m) ∈ Z× Z | m > 0 or (n, 0), n ≥ 0} (S = G+). In this
case the order cannot be archimedian, since we have (−1, 1) < (0, 1)
together with n · (−1, 1) < (0, 1) for any n > 0.

Theorem 3.1.

(1) If G+ induces total archimedian order on G, then card∆S > 1;
(2) If G+ induces lexicographical-product order, then card∆S = 1.

Proof. (1) Suppose G+ induces total archimedian order on G. Without
loss of generality, we may assume that G+ ⊂ R+. Therefore G+ = R+.
Let us give a new representation of semigroup G+.

Consider the Hardi space H2. By the help of inner singular function

exp{1+eiθ

1−eiθ
} define nonunitary faithful isometric representation of the

semigroup R+ in B(H2), t 7→ Vt, by the following equation:

(Vtg)(e
iθ) = exp(t

1 + eiθ

1− eiθ
)g(eiθ).

One can easily verify that Vt is an isometric operator on H2. Let us
show that this representation is not uquivalent to regular representa-
tion.

In case of regular representation W there exists element e0 such that
Wte0⊥e0 for any t ∈ G+. It is sufficient to show that H2 does not
contain element g, such that Vtg⊥g for any t ∈ G+. Indeed, suppose
that there exists such element g. Then we have

0 = (Vtg, g) =
1

2π

∫

S1

exp(t
1 + eiθ

1 − eiθ
)g(eiθ)g(eiθ)dµ(θ) = (4)

=
1

2π

∫

S1

exp(t
1 + eiθ

1 − eiθ
)dµ(θ).
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If t → 0, the right-hand side of (4) converges to 1, which leads to a
contradiction. Thus, representations V and W are not equivalent.

Now let us prove the second part of the theorem, (2).
The group of transformations of iteger lattice Z × Z is a group

SL(2,Z). For any pair of lexicographical-product orders on Z × Z
there exists an element of SL(2,Z), which transforms the first one to
the second one. Therefore, without loss of generality, we may consider
that S is equal to the following semigroup:

{(n,m) ∈ Z× Z | m > 0 or (n, 0), n ≥ 0}.

Take representation V : S → B(H) in ∆S. Since operator V(1,0) is
isometric and not unitary, there exists h0 ∈ H such that V ∗

(1,0)h0 = 0.
Since V(0,1) = V(1,0)V(−1,1), we have

V ∗
(0,1)h0 = V ∗

(−1,1)V
∗
(1,0)h0 = 0. (5)

Therefore, h0 is an initial vector for operators V(0,1) and V(1,0). Conse-
quently, it is initial for any V(n,m), where (n,m) ∈ S.

Consider Hilbert space H1, generated by linear span of the set

{V(n,m)h0, (n,m) ∈ S}

Equation (5) implies that the family {V(n,m)h0, (n,m) ∈ S} forms an
orthonormal basis in H1, and

V ∗
(k,l)V(n,m)h0 = V(a,b)h0 or 0.

Therefore, H1 is an invariant subspace for C∗-algebra C∗
red(S). Since

representation V is irreducible, we have H1 = H .
Consequently, the family of vectors en,m = V(n,m)h0, for (n,m) ∈ S,

forms an orthonormal basis of H . This implies immediately H ∼= l2(S).
�
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