Isometric representations of totally ordered semigroups

M A. Aukhadiev
Kazan State Power Engineering University
V H. Tepoyan
Kazan State Power Engineering University

Follow this and additional works at: https://ro.uow.edu.au/eispapers
Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation

Aukhadiev, M A. and Tepoyan, V H., "Isometric representations of totally ordered semigroups" (2012).
Faculty of Engineering and Information Sciences - Papers: Part A. 2064.
https://ro.uow.edu.au/eispapers/2064

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Isometric representations of totally ordered semigroups

Abstract
Let S be a subsemigroup of an abelian torsion-free group G. If S is a positive cone of G, then all C^{*} algebras generated by faithful isometrical non-unitary representations of S are canon- ically isomorphic. Proved by Murphy, this statement generalized the well-known theorems of Coburn and Douglas. In this note we prove the reverse.
\section*{Keywords}
isometric, totally, semigroups, representations, ordered
\section*{Disciplines}
Engineering | Science and Technology Studies
\section*{Publication Details}
Aukhadiev, M. A. \& Tepoyan, V. H. (2012). Isometric representations of totally ordered semigroups. Lobachevskii Journal of Mathematics, 33 (3), 239-243.

ISOMETRIC REPRESENTATIONS OF TOTALLY ORDERED SEMIGROUPS

M.A.AUKHADIEV AND V.H.TEPOYAN

Abstract

Let S be a subsemigroup of an abelian torsion-free group G. If S is a positive cone of G, then all C*-algebras generated by faithful isometrical non-unitary representations of S are canonically isomorphic. Proved by Murphy, this statement generalized the well-known theorems of Coburn and Douglas. In this note we prove the reverse. If all C^{*}-algebras generated by faithful isometrical non-unitary representations of S are canonically isomorphic, then S is a positive cone of G . Also we consider $G=\mathbb{Z} \times \mathbb{Z}$ and prove that if S induces total order on G, then there exist at least two unitarily not equivalent irreducible isometrical representation of S . And if the order is lexicographical-product order, then all such representations are unitarily equivalent.

1. Introduction and preliminaries

Within this paper S is a subsemigroup of an additive abelian torsionfree group G with zero. S induces a partial order on G : $a \prec b$ if there exists $c \in S$ such that $a+c=b$. Semigroup S induces full order on G, i.e. for any $a, b \in S$ either $a \prec b$ or $b \prec a$, if $G=S \cup(-S)$ and $S \cap(-S)=\{0\}$. In this case write $S=G^{+}-a$ positive cone of G. Each semigroup S, which doesn't contain groups, is contained in some positive cone G^{+}. This follows from the axiom of choice.

Let G be an abelian totally ordered group and S - subsemigroup of G^{+}, which doesn't contain groups. We denote by Δ_{S} a set of unitary equivalence classes of faithful irreducible non-unitary isometrical representations of semigroup S. For $V \in \Delta_{S}$ define S_{V} as a semigroup generated by operators V_{a} and V_{b}^{*}, where $a, b \in S$ and $V_{a}=V(a)$.

An inverse semigroup P is a semigroup, such that each element x has a unique inverse element x^{*}, which satisfies the following:

$$
\begin{equation*}
x x^{*} x=x, x^{*} x x^{*}=x^{*} \tag{1}
\end{equation*}
$$

Definition 1.1. We call the representation $V \in \Delta_{S}$ inverse, if S_{V} is an inverse semigroup.

In the well-known work [2] Coburn proved that all isometric representations of semigroup \mathbb{N} generate canonically isomorphic C^{*}-algebras.

[^0]The same was proved by Douglas [3] for positive cones in \mathbb{R} and by Murphy [8] for positive cones of abelian totally ordered groups. In section 2 we show that every semigroup S has at least one inverse representation. Therefore all faithful isometric representations of positive cone are inverse.
S.A.Grigoryan assumed that all representations in Δ_{S} are inverse if and only if S is a totally ordered semigroup, i.e. S is a positive cone of some group. We prove this hypothesis in section 2.

In section 3 we prove that if S induces full archimedian order on $\mathbb{Z} \times \mathbb{Z}$, then it has at least two unitarily not equivalent irreducible isometric representations. In case S induces a total lexicographicalproduct order, all such representations are unitarily equivalent.

2. Inverse representations

Regular isometric representation is a map $V: S \rightarrow B\left(l^{2}(S)\right), a \mapsto V_{a}$, defined as follows:

$$
\left(V_{a} f\right)(b)= \begin{cases}f(c), & \text { if } b=a+c \text { for some } c \in S \\ 0, & \text { otherwise }\end{cases}
$$

C^{*}-algebra generated by regular isometric representation of semigroup S is called a reduced semigroup C^{*}-algebra, denoted by $C_{r e d}^{*}(S)$ [6].

A finite product of operators of the form V_{a} and $V_{b}^{*}, a, b \in S$ is called a monomial. An index of monomial $W=V_{a_{1}} V_{a_{2}}^{*} V_{a_{3}} \ldots V_{a_{n}}^{*}$ is an element of group $\Gamma=S-S$, equal to

$$
\operatorname{ind} W=\left(a_{2}+a_{4}+\ldots+a_{n}\right)-\left(a_{1}+a_{3}+\ldots+a_{n-1}\right),
$$

when n is even [4]. For odd n we have:

$$
\begin{gathered}
W=V_{a_{1}} V_{a_{2}}^{*} V_{a_{3}} \ldots V_{a_{n}} \\
\operatorname{ind} W=\left(a_{2}+a_{4}+\ldots+a_{n-1}\right)-\left(a_{1}+a_{3}+\ldots+a_{n}\right)
\end{gathered}
$$

It is clear that

$$
\operatorname{ind}\left(W_{1} \cdot W_{2}\right)=\operatorname{ind} W_{1}+\operatorname{ind} W_{2}
$$

Due to definition, monomials form a semigroup, which we denote by S_{V}.

Lemma 2.1. The regular isometric representation of S is inverse.
Proof. Consider a family $\left\{e_{a}\right\}_{a \in S}$ of elements in $l^{2}(S)$ such that $e_{a}(b)=$ $\delta_{a, b}$. This is a natural orthonormal basis in $l^{2}(S)$. Every monomial W in S_{V} satisfies the following:

$$
W e_{b}=e_{b-d} \text { or } 0, \text { where } d=\operatorname{ind} W \text {. }
$$

Note that $W W^{*}$ and $W^{*} W$ are monomials also, besides

$$
\operatorname{ind}\left(W \cdot W^{*}\right)=\operatorname{ind}\left(W^{*} \cdot W\right)
$$

By virtue of Lemma 2.2 in [5], $W W^{*}$ and $W^{*} W$ are orthogonal projections. This implies immediately that $W=W W^{*} W$ and $W^{*}=$ $W^{*} W W^{*}$. Therefore, an inverse element for W is W^{*}.

Lemma 2.2. There exists at least one noninverse representation in Δ_{S} for a semigroup $S \subsetneq G^{+}$.
Proof. Take a regular representation V of S in $B\left(l^{2}(S)\right), a \mapsto V_{a}$. Since S is not equal to G^{+}, there exist incomparable elements $c, d \in S$, i.e. $c-d \notin S$ and $d-c \notin S$. Consider function $g_{c, d}=\frac{e_{c}+e_{d}}{\sqrt{2}}$ in $l^{2}(S)$. Denote by H a Hilbert space generated by linear span of $\left\{V_{a} g_{c, d}\right\}_{a \in S}$. Note that $V_{a} g_{c, d}=g_{c+a, d+a}$. Define representation \widetilde{V} of semigroup S on $H, a \mapsto \widetilde{V}_{a}$, by setting $\widetilde{V}_{a}=V_{a} P$, where $P: l^{2}(S) \rightarrow H$ is a projection on H.

This representation is faithful isometric due to its definition.
Let us show that

$$
\begin{equation*}
\widetilde{V_{c}} \widetilde{V_{c}^{*}} \widetilde{V_{d}} \widetilde{V_{d}^{*}} \neq \widetilde{V_{d}} \widetilde{V_{d}^{*}} \widetilde{V_{c}} \widetilde{V_{c}^{*}} \tag{2}
\end{equation*}
$$

Consider $\widetilde{V_{d}^{*}} g_{2 c, c+d}$ and find such elements $x \in S$ that

$$
\left(\widetilde{V_{d}^{*}} g_{2 c, c+d}, g_{c+a, d+a}\right)=0 .
$$

To this end, calculate

$$
\begin{gather*}
\left(\widetilde{V_{d}^{*}} g_{2 c, c+d}, g_{c+a, d+a}\right)=\left(g_{2 c, c+d}, g_{c+d+a, 2 d+a}\right)= \\
=\left(\frac{e_{2 c}+e_{c+d}}{\sqrt{2}}, \frac{\left.e_{c+d+a+e_{2 d+a}}^{\sqrt{2}}\right)=}{}=\frac{1}{2}\left(\left(e_{2 c}, e_{c+d+a}\right)+\left(e_{2 c}, e_{2 d+a}\right)+\left(e_{c+d}, e_{c+d+a}\right)+\left(e_{c+d}, e_{2 d+a}\right)\right) .\right. \tag{3}
\end{gather*}
$$

First and last summands are equal to zero, since c and d are incomparabe. Therefore the scale product $\left(\widetilde{V_{d}^{*}} g_{2 c, c+d}, g_{c+a, d+a}\right)$ is not equal to zero if and only if either $a=0$ or $a=2 c-2 d$. Note that element $2 c-2 d$ may not be contained in semigroup S. Despite this fact we continue the proof assuming $2 c-2 d \in S$. One can easily see that without this assumption the proof is trivial.

Denote by H_{0} a Hilbert space in H generated by elements of the following set

$$
\left\{g_{c+a, d+a} \mid a \neq 0, a \neq 2 c-2 d\right\}
$$

Repeating the same arguments as above one can show that $g_{c, d}$ and $g_{3 c-d, 2 c-d}$ are mutually orthogonal, and both are orthogonal to H_{0}. Consequently, codim $H_{0}=2$ and the elements $g_{c, d}$ and $g_{3 c-d, 2 c-d}$ form an orthonormal basis in $H_{0}^{\perp} \subset H$. Thus,

$$
H=H_{0} \oplus \mathbb{C} g_{c, d} \oplus \mathbb{C} g_{3 c-d, 2 c-d},
$$

and from equation (3) we have

$$
V_{d}^{*} g_{2 c, c+d}=\frac{1}{2}\left(g_{c, d}+g_{3 c-2 d, 2 c-d}\right) .
$$

For futher be noted, the assumption $2 c-2 d \in S$ implies that $2 d-2 c$ is not contained in semigroup S. Otherwise G^{+}would contain non-trivial group, which is impossible. Therefore, due to symmetry we get

$$
V_{c}^{*} g_{c+d, 2 d}=\frac{1}{2} g_{c, d}
$$

Thus,

$$
\begin{gathered}
\widetilde{V}_{c} \widetilde{V_{c}^{*}} \widetilde{V}_{d} \widetilde{V_{d}^{*}} g_{2 c, c+d}=\frac{1}{2} \widetilde{V_{c}} \widetilde{V_{c}^{*}} \widetilde{V}_{d}\left(g_{c, d}+g_{3 c-2 d, 2 c-d}\right)= \\
=\frac{1}{2}\left(\widetilde{V_{c}} \widetilde{V_{c}^{*}} g_{c+d, 2 d}+\widetilde{V_{c}} \widetilde{V_{c}^{*}} g_{3 c-d, 2 c}\right)= \\
=\frac{1}{4} V_{c} g_{c, d}+\frac{1}{2} V_{c} g_{2 c-d, c}=\frac{1}{4} g_{2 c, c+d}+\frac{1}{2} g_{3 c-d, 2 c}
\end{gathered}
$$

On the other hand,

$$
\widetilde{V_{d}} \widetilde{V_{d}^{*}} \widetilde{V_{c} V_{c}^{*}} g_{2 c, c+d}=\widetilde{V_{d}} \widetilde{V_{d}^{*}} g_{2 c, c+d}=\frac{1}{2} g_{c+d, 2 d}+\frac{1}{2} g_{3 c-d, 2 c}
$$

Consequently, we get inequality (2)

Theorem 2.1. The following properties of semigroup S are equivalent
(1) $S=G^{+}$;
(2) all representations in Δ_{S} are canonically isomorphic;
(3) all representations in Δ_{S} are inverse;
(4) for any representation V in Δ_{S} and for any $a, b \in S$ the following equality is satisfied

$$
V_{a} V_{a}^{*} V_{b} V_{b}^{*}=V_{b} V_{b}^{*} V_{a} V_{a}^{*}
$$

Proof. (1) \Rightarrow (22) was proved by Murphy [8].
Let us show implication (2) \Rightarrow (3). Suppose all representations in Δ_{S} are canonically isomorphic and $S \subset G^{+}$. Consider representation $V: S \rightarrow l^{2}\left(G^{+}\right), a \mapsto V_{a}$, defined by

$$
V_{a} e_{b}=e_{a+b}
$$

where $\left\{e_{a}\right\}_{a \in G^{+}}$is an orthonormal basis in $l^{2}\left(G^{+}\right)$. For any $a, b, c \in S$ if $a \prec b$ or $a=b$ we have $V_{a}^{*} V_{b} e_{c}=e_{c+b-a}$. Since all elements in G^{+} are pairwise comparable, we have two cases. If $a \prec b$, then operator $V_{a}^{*} V_{b}$ is isometric, otherwise $(b \prec a)$ operator $\left(V_{a}^{*} V_{b}\right)^{*}$ is isometric. Consequently, semigroup S_{V} is inverse.

Implication (3) \Rightarrow (4) concerns only inverse semigroups, and it was proved in [1].

Lemma (2.2 implies (4) \Rightarrow (11).
Corollary 2.1. The C^{*}-algebras $C^{*}(S)$ and $C_{\text {red }}^{*}(S)$ are isomorphic if and only if S is totally ordered, where $C^{*}(S)$ is a universal enveloping C^{*}-algebra, generated by all isometric representations of semigroup S [9].

In particular case $S=\mathbb{Z}^{+}$this statement implies that the algebras $C^{*}\left(\mathbb{Z}^{+}\right)$and $C_{\text {red }}^{*}\left(\mathbb{Z}^{+}\right)$are isomorphic. This result was proved by Coburn in his well-known work [2]. As an example of the converse to this statement take $S=\mathbb{Z}^{+} \backslash\{1\}$. Due to Corollary 2.1, the algebras $C^{*}(S)$ and $C_{r e d}^{*}(S)$ are not isomorphic. The same was shown in [7], and this case was studied in details in [10.

3. C^{*}-algebras generated by totally ordered semigroup IN $\mathbb{Z} \times \mathbb{Z}$

Consider group $G=\mathbb{Z} \times \mathbb{Z}$. Total order on G is equivalent to straight line dividing it into two parts. It implies two cases. The first case: the line meets the point $(0,0)$ and doesn't meet any integers. Such line is characterized by equation $x+\alpha y=0$, where α is irrational. The second case: the line meets integers, i.e. $x+\alpha y=$ 0 , for rational α. The order induced by the first line is archimedian. In the second case we may consider $G=S \cup(-S)$, where $S=\{(n, m) \in \mathbb{Z} \times \mathbb{Z} \mid m>0$ or $(n, 0), n \geq 0\}\left(S=G^{+}\right)$. In this case the order cannot be archimedian, since we have $(-1,1)<(0,1)$ together with $n \cdot(-1,1)<(0,1)$ for any $n>0$.

Theorem 3.1.

(1) If G^{+}induces total archimedian order on G, then card $\Delta_{S}>1$;
(2) If G^{+}induces lexicographical-product order, then card $\Delta_{S}=1$.

Proof. (1) Suppose G^{+}induces total archimedian order on G. Without loss of generality, we may assume that $G^{+} \subset \mathbb{R}^{+}$. Therefore $\overline{G^{+}}=\mathbb{R}^{+}$. Let us give a new representation of semigroup G^{+}.

Consider the Hardi space H^{2}. By the help of inner singular function $\exp \left\{\frac{1+e^{i \theta}}{1-e^{i \theta}}\right\}$ define nonunitary faithful isometric representation of the semigroup \mathbb{R}^{+}in $B\left(H^{2}\right), t \mapsto V_{t}$, by the following equation:

$$
\left(V_{t} g\right)\left(e^{i \theta}\right)=\exp \left(t \frac{1+e^{i \theta}}{1-e^{i \theta}}\right) g\left(e^{i \theta}\right)
$$

One can easily verify that V_{t} is an isometric operator on H^{2}. Let us show that this representation is not uquivalent to regular representation.

In case of regular representation W there exists element e_{0} such that $W_{t} e_{0} \perp e_{0}$ for any $t \in G^{+}$. It is sufficient to show that H^{2} does not contain element g, such that $V_{t} g \perp g$ for any $t \in G^{+}$. Indeed, suppose that there exists such element g. Then we have

$$
\begin{align*}
0=\left(V_{t} g, g\right) & =\frac{1}{2 \pi} \int_{S^{1}} \exp \left(t \frac{1+e^{i \theta}}{1-e^{i \theta}}\right) g\left(e^{i \theta}\right) \overline{g\left(e^{i \theta}\right)} d \mu(\theta)= \tag{4}\\
& =\frac{1}{2 \pi} \int_{S^{1}} \exp \left(t \frac{1+e^{i \theta}}{1-e^{i \theta}}\right) d \mu(\theta) .
\end{align*}
$$

If $t \rightarrow 0$, the right-hand side of (4) converges to 1 , which leads to a contradiction. Thus, representations V and W are not equivalent.

Now let us prove the second part of the theorem, (2).
The group of transformations of iteger lattice $\mathbb{Z} \times \mathbb{Z}$ is a group $S L(2, \mathbb{Z})$. For any pair of lexicographical-product orders on $\mathbb{Z} \times \mathbb{Z}$ there exists an element of $S L(2, \mathbb{Z})$, which transforms the first one to the second one. Therefore, without loss of generality, we may consider that S is equal to the following semigroup:

$$
\{(n, m) \in \mathbb{Z} \times \mathbb{Z} \mid m>0 \text { or }(n, 0), n \geq 0\}
$$

Take representation $V: S \rightarrow B(H)$ in Δ_{S}. Since operator $V_{(1,0)}$ is isometric and not unitary, there exists $h_{0} \in H$ such that $V_{(1,0)}^{*} h_{0}=0$. Since $V_{(0,1)}=V_{(1,0)} V_{(-1,1)}$, we have

$$
\begin{equation*}
V_{(0,1)}^{*} h_{0}=V_{(-1,1)}^{*} V_{(1,0)}^{*} h_{0}=0 \tag{5}
\end{equation*}
$$

Therefore, h_{0} is an initial vector for operators $V_{(0,1)}$ and $V_{(1,0)}$. Consequently, it is initial for any $V_{(n, m)}$, where $(n, m) \in S$.

Consider Hilbert space H_{1}, generated by linear span of the set

$$
\left\{V_{(n, m)} h_{0},(n, m) \in S\right\}
$$

Equation (5) implies that the family $\left\{V_{(n, m)} h_{0},(n, m) \in S\right\}$ forms an orthonormal basis in H_{1}, and

$$
V_{(k, l)}^{*} V_{(n, m)} h_{0}=V_{(a, b)} h_{0} \quad \text { or } 0 .
$$

Therefore, H_{1} is an invariant subspace for C^{*}-algebra $C_{r e d}^{*}(S)$. Since representation V is irreducible, we have $H_{1}=H$.

Consequently, the family of vectors $e_{n, m}=V_{(n, m)} h_{0}$, for $(n, m) \in S$, forms an orthonormal basis of H. This implies immediately $H \cong l^{2}(S)$.

References

[1] A.H. Clifford, G.B. Preston, Algebraic theory of semigroups, 1, Amer. Math. Soc., 1961
[2] L.A. Coburn, The C*-algebra generated by an isometry, Bull. Amer. Math. Soc. 73(1967), 722-726.
[3] R.G. Douglas, On the C*-algebra of a one-parameter semigroup of isometries, Acta Math. 128(1972), 143-152.
[4] S.A. Grigoryan, A.F. Salakhutdinov, C*-algebras generated by semigroups, Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no.10, 68-71
[5] S.A. Grigoryan, A.F. Salakhutdinov, C*-algebras generated by cancellative semigroups, Siberian Math. J., 51:1, 12-19, 2010
[6] S.Y. Jang, Reduced crossed products by semigroups of automorphisms, Korean Math. Soc. 36(1999), 97-107.
[7] S.Y. Jang, Uniqueness property of C*-algebras like the Toeplitz algebras, Trends Math. 6(2003), 29-32.
[8] G.J. Murphy, Ordered groups and Toeplitz algebras, J. Operator Theory 18(1987), 303-326.
[9] G.J. Murphy, Crossed Products of C^{*}-algebras by semigroups of automorphisms, Proc. London Math. Soc. 68(1994), 423-448.
[10] I. Raeburn, S.T. Vittadello, The isometric representation theory of a perforated semigroup, J. Operator Theory, 62:2 (2009), 357-370
(M.A.Aukhadiev, V.H.Tepoyan) Kazan State Power Engineering University, Krasnoselskaya str., 51, 420066, Kazan, Russia

E-mail address, M.A.Aukhadiev: m.aukhadiev@gmail.com
E-mail address, V.H.Tepoyan: tepoyan.math@gmail.com

[^0]: Key words and phrases. totally ordered semigroup, group, inverse semigroup, regular representation, isometric representation.

