233 research outputs found

    Reproducible Host Networking Evaluation with End-to-End Simulation

    Get PDF
    Networking researchers are facing growing challenges in evaluating and reproducing results for modern network systems. As systems rely on closer integration of system components and cross-layer optimizations in the pursuit of performance and efficiency, they are also increasingly tied to specific hardware and testbed properties. Combined with a trend towards heterogeneous hardware, such as protocol offloads, SmartNICs, and in-network accelerators, researchers face the choice of either investing more and more time and resources into comparisons to prior work or, alternatively, lower the standards for evaluation. We aim to address this challenge by introducing SimBricks, a simulation framework that decouples networked systems from the physical testbed and enables reproducible end-to-end evaluation in simulation. Instead of reinventing the wheel, SimBricks is a modular framework for combining existing tried-and-true simulators for individual components, processor and memory, NIC, and network, into complete testbeds capable of running unmodified systems. In our evaluation, we reproduce key findings from prior work, including dctcp congestion control, NOPaxos in-network consensus acceleration, and the Corundum FPGA NIC.Comment: 15 pages, 10 figures, under submissio

    Broussonetia papyrifera Root Bark Extract Exhibits Anti-inflammatory Effects on Adipose Tissue and Improves Insulin Sensitivity Potentially Via AMPK Activation

    Get PDF
    The chronic low-grade inflammation in adipose tissue plays a causal role in obesity-induced insulin resistance and its associated pathophysiological consequences. In this study, we investigated the effects of extracts of Broussonetia papyrifera root bark (PRE) and its bioactive components on inflammation and insulin sensitivity. PRE inhibited TNF-alpha-induced NF-kappa B transcriptional activity in the NF-kappa B luciferase assay and pro-inflammatory genes' expression by blocking phosphorylation of I kappa B and NF-kappa B in 3T3-L1 adipocytes, which were mediated by activating AMPK. Ten-week-high fat diet (HFD)-fed C57BL6 male mice treated with PRE had improved glucose intolerance and decreased inflammation in adipose tissue, as indicated by reductions in NF-kappa B phosphorylation and pro-inflammatory genes' expression. Furthermore, PRE activated AMP-activated protein kinase (AMPK) and reduced lipogenic genes' expression in both adipose tissue and liver. Finally, we identified broussoflavonol B (BF) and kazinol J (KJ) as bioactive constituents to suppress pro-inflammatory responses via activating AMPK in 3T3-L1 adipocytes. Taken together, these results indicate the therapeutic potential of PRE, especially BF or KJ, in metabolic diseases such as obesity and type 2 diabetes

    PPM1A Controls Diabetic Gene Programming through Directly Dephosphorylating PPAR?? at Ser273

    Get PDF
    Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a master regulator of adipose tissue biology. In obesity, phosphorylation of PPAR gamma at Ser273 (pSer273) by cyclin-dependent kinase 5 (CDK5)/extracellular signal-regulated kinase (ERK) orchestrates diabetic gene reprogramming via dysregulation of specific gene expression. Although many recent studies have focused on the development of non-classical agonist drugs that inhibit the phosphorylation of PPAR gamma at Ser273, the molecular mechanism of PPAR gamma dephosphorylation at Ser273 is not well characterized. Here, we report that protein phosphatase Mg2+/Mn2+-dependent 1A (PPM1A) is a novel PPAR gamma phosphatase that directly dephosphorylates Ser273 and restores diabetic gene expression which is dysregulated by pSer273. The expression of PPM1A significantly decreases in two models of insulin resistance: diet-induced obese (DIO) mice and db/db mice, in which it negatively correlates with pSer273. Transcriptomic analysis using microarray and genotype-tissue expression (GTEx) data in humans shows positive correlations between PPM1A and most of the genes that are dysregulated by pSer273. These findings suggest that PPM1A dephosphorylates PPAR gamma at Ser273 and represents a potential target for the treatment of obesity-linked metabolic disorders

    Evaluation of the added mass for a spheroid-type unmanned underwater vehicle by vertical planar motion mechanism test

    Get PDF
    ABSTRACTThis paper shows added mass and inertia can be acquired from the pure heaving motion and pure pitching motion respectively. A Vertical Planar Motion Mechanism (VPMM) test for the spheroid-type Unmanned Underwater Vehicle (UUV) was compared with a theoretical calculation and Computational Fluid Dynamics (CFD) analysis in this paper. The VPMM test has been carried out at a towing tank with specially manufactured equipment. The linear equations of motion on the vertical plane were considered for theoretical calculation, and CFD results were obtained by commercial CFD package. The VPMM test results show good agreement with theoretical calculations and the CFD results, so that the applicability of the VPMM equipment for an underwater vehicle can be verified with a sufficient accuracy

    E2: a framework for NFV applications

    Get PDF
    By moving network appliance functionality from proprietary hardware to software, Network Function Virtualization promises to bring the advantages of cloud computing to network packet processing. However, the evolution of cloud computing (particularly for data analytics) has greatly bene- fited from application-independent methods for scaling and placement that achieve high efficiency while relieving programmers of these burdens. NFV has no such general management solutions. In this paper, we present a scalable and application-agnostic scheduling framework for packet processing, and compare its performance to current approaches

    RECYCLING PROCESS OF U3O8 POWDER IN MnO-Al2O3 DOPED LARGE GRAIN UO2 PELLETS

    Get PDF
    The effect of various process variables on the powder properties of recycled U3O8 from MnO-Al2O3 doped large grain UO2 pellets and the effect of those recycled U3O8 powders on the sintered density and grain size of MnO-Al2O3 doped large grain UO2 pellets have been investigated. The evolution of morphology, size, and BET surface area of the recycled U3O8 powders according to the respective variation of the thermo-mechanical treatment variables of oxidation temperature, powder milling, and sequential cyclic heat treatment of oxidation and then reduction was examined. The correlation between the BET surface area of recycled U3O8 powder and the sintered pellet properties of MnO-Al2O3 doped pellets showed that the pellet density and grain size of doped pellets were increased and then saturated by increasing the BET surface area of the recycled U3O8 powder. The density and grain size of the pellets were maximized when the BET surface area of the recycled U3O8 powder was in the vicinity of 3m2/g. Among the process variables applied in this study, the cyclic heat treatment followed by low temperature oxidation was a potential process combination to obtain the sinter-active U3O8 powder

    The effects of ambient He pressure on the oxygen density of Er-doped SiO x thin films grown by laser ablation of a Si:Er 2 O 3 target

    Get PDF
    Abstract Er-doped SiO x thin films were fabricated by laser ablation of a Si:Er 2 O 3 target in He atmosphere. We have measured the photoluminescence (PL) at 1.54 mm for the films grown at different He pressures and found that the oxygen density of the grown film that strongly influences the PL intensity is highly correlated with the ambient He pressure. This manifests that oxygen density of the film can be controlled in an inert atmosphere to maximize PL intensity when we adopt pulsed laser deposition (PLD) technique to deposit Er-doped SiO x thin films. Also, we have examined the temperature dependence of PL and observed that the thermal quenching is greatly reduced for the PLD-grown films.
    corecore