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ABSTRACT: This paper shows added mass and inertia can be acquired from the pure heaving motion and pure pitching 
motion respectively. A Vertical Planar Motion Mechanism (VPMM) test for the spheroid-type Unmanned Underwater Vehicle 
(UUV) was compared with a theoretical calculation and Computational Fluid Dynamics (CFD) analysis in this paper. The 
VPMM test has been carried out at a towing tank with specially manufactured equipment. The linear equations of motion on the 
vertical plane were considered for theoretical calculation, and CFD results were obtained by commercial CFD package. The 
VPMM test results show good agreement with theoretical calculations and the CFD results, so that the applicability of the 
VPMM equipment for an underwater vehicle can be verified with a sufficient accuracy.  
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INTRODUCTION 
 

Recently, UUVs are increasingly used, among in 
scientific, industrial and military applications. Before 
designing an UUV, the numerical simulations with a 
mathematical model are needed to test its performance. The 
mathematical model contains a number of hydrodynamic 
derivatives including added mass and damping coefficients. 
For the precise design of UUVs, therefore, the accurate 
values of the derivatives are required. 

The hydrodynamic derivatives can be obtained by several 
experimental techniques which involve a planar motion 
mechanism (PMM) test, a rotating arm test and a circular 
motion test (CMT). Among the above, the most popular is a 
PMM test, which has the advantage that can acquire both 
added masses and damping forces simultaneously. 

In this study, to verify the VPMM equipment for an 
underwater vehicle, the PMM test for a spheroid-type UUV is 
performed in a towing tank. The experimental results are 
compared with the theoretical values (Lamb and Sir Horace, 
1945) and the results from CFD analysis. 
 
 
VPMM TEST 
 
VPMM Equipment 

 
For the purpose of a VPMM test for underwater vehicles, 

the VPMM equipment is developed as following as Fig. 1 
and specifications are shown in Table 1. 
 

 
 
Fig. 1 VPMM equipment. 
 
Test Procedure 
 

The Spheroid-type model is adopted to compare the 
experimental results with theoretical values and CFD results. 
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Table 1 Specifications of VPMM equipment. 
Item Specification 

Test model L = approx. 2m 
Test speed U = approx. 1.0m/s 

Pure heave motion Approx. ± 0.25m 
Pure pitch motion Approx. ± 15 Deg. 

Strut type 2-streamline shape strut 
Control motor Servo motor 1set 

Reduction motor Worm reducer 
Control system Speed control 

2-Comp. load cell Fz = 1000N, Fx = 500N 
1-Comp. load cell Fz = 1000N 

 
The particulars of the model are given in Fig. 2. The 

coordinate system adopted in Fig. 3. The forces X and Z were 
measured by using one- and two- component load cells set up 
on the fore and the aft of the model, respectively. The 
moment M can be calculated as 
 

2 2 1 1M z l z l= −                                    (1) 
 

Where, l1 and l2 are the distance from the center of 
gravity (C.G.) and subscripts 1, 2 indicate the fore and the aft, 
respectively. 
 

 
 
Fig. 2 Spheroid-Type UUV test model. 
 

 
 
Fig. 3 Coordinate system. 

In pure heaving case, the forced oscillating periods 
are 5, 8, 10s and heaving amplitude is about 150mm. In 
pure pitching case, the forced oscillating period is 10, 
12s and pitching amplitude is about 5.4°. Both cases 
were tested at 0.7m-deep which was the maximum depth 
with the equipment. The velocity of towing carriage is 
about 1m/s. All of data were sampled at a rate of 100Hz 
for about 50s. 
 
Mathematical Model 
 

6-DOF (Degree Of Freedom) mathematical equations of 
motion for underwater vehicles (Abkowitz, 1969) only about 
vertical motion (pitching and heaving motion) can be written 
as following. 
 

2 2[ ( ) ( )]G GZ m w pv qu z p q x rp q= + − − + + −          (2) 
 

2 2

( )

[ ( ) ( ) ( )]
yy xx zz

G G G G

M I q I I rp

m z u qw rv x w pv qu x z p r

= + − +

+ − − + − + −
   (3) 

 
Considering the coupled motion between pitching and 

heaving motion and taking the linear terms in each equation 
(Shon et al., 2006), the linear equations for vertical motion 
can be obtained. 

In the case of heaving motion, the forces measured have 
opposite sign to the motion. That is, when the model is 
downward, positive z-direction, the negative forces are 
measured. Therefore in the right-hand side of Eq. (2), the 
external force ZE has negative sign. 
 
- Linear equation of heaving motion: 
 

33 35( ) ( ) ( )E w G qZ m A w Z w mx A q Z mU q− = + − − − − +    (4) 
 
- Linear equation of pitching motion: 
 

 55 35

35

( ) ( ) ( )

    ( ) ( )
E yy q G G

G w G B

M I A q M mx U q mx A q

mx A w M w mg z z θ

= + − − − −

− − − + −      (5) 
 

In the above, m refers to mass of UUV, Iyy to mass 
moment of inertia about y-axis, (xG, zG) to coordinates of 
center of gravity in x- and z-direction, zB to z-coordinate 
of center of buoyancy, θ to pitch angle, g to acceleration 
of gravity, and Aij to added-mass tensor (Newman, 1978) 
Subscripts i and j in Aij represent six modes of motion. 
Terms Zw, Zq, Mq and Mw are linear hydrodynamic 
derivatives. 

 
Analysis Procedure 
 

The Fourier analysis is adopted as the method to determine 
derivatives. The VPMM separates the motions of a body 
moving through a fluid into two hydrodynamic motions, which 
are pure heaving and pure pitching motion. In the pure heaving 
case the in-phase component of force is directly related to the 
linear acceleration and, therefore, can be used to compute 
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explicitly the associated acceleration derivatives. Similarly, in 
the pure pitching case the in-phase component of force is 
directly related to the angular velocity. Thus angular 
acceleration and rotary derivatives can be computed explicitly. 
 
Pure heaving motion 
 

Assuming the model is moving sinusoidal path, the pitch 
angle θ, angular velocity q and angular acceleration q are 
zero at all times since the phase angle between the struts is 
zero. 
 

 
 
Fig. 4 Pure heaving motion. 
 

As shown in Fig. 4, the vertical displacement z, linear 
vertical velocity w and linear vertical acceleration w  for 
pure heaving motion can be expressed respectively as 
 

0

0
2

0

s in
cos

sin

z z t
w z z t

w z z t

ω
ω ω

ω ω

=
= =

= = −

                             (6) 

 
Where, z0 is the amplitude of heaving motion. Using the 

above pure heaving conditions ( 0q qθ = = = ) the reduced 
equations for the pure heaving motion can be derived from 
Eq. (4) and (5). 
 

33

35

( )
( )

E w

E G w

Z m A w Z w
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= − + +

= − − −
                       (7) 

 
Substituting Eq. (6) into the reduced equations, the 

equations for pure heaving motion can be written as 
 

2
33 0 0

2
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The external force and moment, ZE and ME, measured 

during the test can be decomposed into in-phase and out-
phase components with the motion by Fourier analysis. 
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Therefore, hydrodynamic derivatives for pure heaving 

motion can be expressed as 
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Pure pitching motion 
 

The condition that must be satisfied to obtain a pure 
pitching motion for a body moving through a fluid is that the 
pitch angle varies with time while the angle of attack α, 
measured at the C.G., is maintained equal to zero at all times. 
The motion is one in which the body C.G. moves in 
sinusoidal path, with the longitudinal body axis tangent to the 
path, as shown in Fig. 5. 
 

 
 
Fig. 5 Pure pitching motion. 
 

For this condition, the resultant linear velocity w and 
acceleration w  are zero. The pitch angle  θ, pitching 
velocity q, and pitching acceleration q  can be expressed as 
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Substituting 1( )t tωτ ω ω= −  
 

0
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q
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t
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                            (12) 

 
Where, θ0 is amplitude of pitching motion, z1 and z2 are 

amplitude of heaving motion at fore and aft, respectively, and 
s is the phase difference between the fore and aft. 
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Similarly, using the above pure pitching conditions 
( 0z w w= = = ) the reduced equations for the pure pitching 
motion can be derived from Eq. (4) and (5). 
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( ) ( )
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Substituting Eq. (12) into the reduced equations, the 

equations for pure pitching motion can be written as 
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The external force and moment, ZE and ME, is same as the 

pure heaving case. As the pure heaving case, therefore, 
hydrodynamic derivatives for pure pitching motion can be 
expressed as 
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THEORETICAL CALCULATION 
 

Fortunately, the added mass derivatives for a spheroid 
can be treated with its symmetry. Consider an ellipsoid 
totally submerged and with the origin at the center of the 
ellipsoid, describe as (Thor, 1994) 
 

2 2 2

2 2 2 1x y z
a b c

+ + =                                 (17) 

 
A prolate spheroid is obtained by letting b=c and a>b. 

Introduce Lamb’s k-factors as: 
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Where, α0 and β0 are constants that describe the relative 
proportions of the spheroid. 
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Where, e is the eccentricity of the meridian elliptical 

section and can be written as 
 

2 21 ( / )e b a= −                                  (20) 
 

Lamb and Sir Horace (1945) give representation of added 
mass derivatives for spheroid by defining Lamb’s k-factors. 
 

1

2

u

v w

r q yy
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= −
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                               (21) 

 
Where, the mass and the moment of inertia for a prolate 

spheroid are respectively. 
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3
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πρ
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=
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                     (22) 

 
The values of k1, k2 and k' are plotted in Fig. 6. 

 

 
 
Fig. 6 Lamb’s k-factors. 
 
 
 
CFD ANALYSIS 
 

To verify the results from theoretical calculation, 
commercial CFD code (ANSYS-CFX, 2009) is used. The 
elements, nodes and number of elements used for CFD 
analysis are shown in Table 2. 

k1 

k2

k' 



178 Inter J Nav Archit Oc Engng (2011) 3:174~180
 
 

 

Table 2 Principal conditions employed in the CFD analysis. 

Governing Equations 
Reynolds Averaged Navier- 
Stokes (RANS) equations 
(incompressible fluid) 

Turbulence model k-ε model,  
Shear Stress Transport (SST) 

Reynolds number  Approx. 1.7563e6 

Total no. of elements  131,830  

Total no. of nodes 26,628 

No. of Tetrahedral 122,946 

No. of Prisms (for B.C.) 8,764 

No. of Pyramids 120 
 
Mesh Generation 
 

The 3D model of the UUV was modeled by ANSYS-
Design Modeler and exported to ANSYS-ICEM-CFD and 
meshed to generate the nodes and elements. ‘Tetrahedral’ and 
‘Pyramid’ meshes are employed for generating nodes and 
elements in the fluid domain. The ‘Tetrahedral’ and 
‘Pyramid’ meshes are suitable for representation of a 
complex geometry, but such meshes are not suitable to 
resolve the boundary layer adjacent to the solid body (Nishi, 
2007). Therefore, ‘Prism’ meshes, which are the most 
appropriate element for a boundary layer (ANSYS-CFX, 
2007), are used for generating elements in the boundary layer 
around the body. 

Fig. 7 shows the various meshed sections (hybrid mesh) 
which are merged, and embodied for the CFD analysis by the 
“ANSYS-CFX-MESH” mesh generator. 

 
Turbulence Model 
 

Various turbulence models, such as k-ε, Shear Stress 
Transport, BSL Reynolds Stress, SSG Reynolds Stress model, 
were proposed to provide solutions to the Reynolds stresses 
in terms of known quantities to allow closure of the RANS 
by ANSYS CFX. From the various turbulence models, k-ε 
model and Shear Stress Transport (SST) were considered in 
this study. The reason for this selection is that the k-ε model 
is a commonly used turbulence model for engineering 
simulations due to its robustness and application to a wide 
range of flows, while the Shear Stress Transport model is 
better at predicting separation (ANSYS-CFX, 2007) likely to 
be found at the aft of the UUV. 

 
Description of UUV’s Motion 
 

For the VPMM simulation, the motion of the UUV 
moving sine wave should be simulated. The “MESH-
DEFORMAION” was adopted for the motion simulation that 
the UUV moves the calculated position by the equation 
according to the time. The concerned domain moves with 
considering the UUV motion itself by the “MESH-
DEFORMAION” in the simulation. Because of the reason 
that the concerned domain moves, the meshes in the domain 
should not affect to the CFD results due to the change of the 

size or shape of the meshes. In this study, the position of the 
UUV was specified for the similar motion with the 
experimental test movement by using ANSYS-CFX 
Command Language (CCL). 
 

 
 

 
 
Fig. 7 Hybrid mesh (Structured and unstructured mesh) 
generated adjacent to the main body of the UUV. 
 

Fig. 8 and 9 show the pressure and velocity distribution 
around the UUV when it moves to the traces of the Pure 
Heave and Pitch motions respectively. The pressure 
distribution around the AUV (seen in Fig. 8) shows the 
maximum pressure approx. 436∼441Pa) occurs in the bows, 
but an even distribution fore and aft of the hull. Along the 
mid-body, the boundary layer grows and the flow is 
accelerated as it reaches the stern. Any vertical structure has 
not been form behind the stern as shown in Fig. 9 due to its 
simple shape and low velocity (or low Reynolds no.). 

The z-axis direction forces for the Pure Heave Motion 
and Pure Pitch Motion from VPMM test and CFD analysis 
are compared in Fig. 10 and 11. The z-axis direction force 
predictions from the experimental test and CFD results have 
a high degree of correspondence as shown in Fig. 10 and Fig. 
11. Most of the cases, the CFD values are the mean values of 
the experimental test results from the towing tank. 
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(a) Pure Heave Motion (@T=10) 

 

 
(b) Pure Pitch Motion (@T=10) 

 
Fig. 8 Pressure distribution around the UUV. 
 

 
(a) Pure Heave Motion (@T=10) 

 

 
(b) Pure Pitch Motion (@T=10) 

 
Fig. 9 Velocity distribution around the UUV. 

Table 3 Comparison of results. 

Pure heaving 
motion 

Added mass 

VPMM test CFD 
analysis 

Theoretical 
Cal. 

T = 5s 1.0667m 0.9907m 0.9066m 
T = 8s 1.1112m 1.0780m 0.9066m 

T = 10s 1.2434m 1.1240m 0.9066m 

Pure pitching 
motion 

Added inertia 

VPMM test CFD 
analysis 

Theoretical 
Cal. 

T = 10s 0.7769 Iyy · 0.7335 Iyy 
T = 12s 1.5882 Iyy · 0.7335 Iyy 

 

 
(a) T = 5 sec 

 

 
(b) T = 8 sec 

 

 
(c) T = 10 sec 

 
Fig. 10 Comparison of the experimental and CFD results for 
the Z-force of the Pure Heaving Motion. 
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(a) T = 10 sec 

 

 
(b) T = 12 sec 

 
Fig. 11 Z-force of the Pure Pitch Motion. 
 

Conclusively, the added mass values obtained from the 
pure heave motion CFD analysis are 0.9907m (@ T=5s), 
1.0780m (@ T=8s), 1.1240m (@ T=10s), and that value has a 
high degree of agreement with the experimental test (VPMM 
test) result in the towing tank as shown in Table 3.  
 
 
RESULTS 

 
As a result of theoretical calculation, the added mass and 

added inertia were 0.9066m and 0.7335 Iyy , respectively.  In 
VPMM test, they were 1.1206m and 0.1527 Iyy on the average. 
Excepting for lower frequencies (T= 8, 10s in pure heaving 
case and T= 10, 12s in pure pitching case), the added mass 
and the added inertia showed no significant difference 
between the experimental results and theoretical calculations. 
That is, when the forced oscillating period are 5s (in pure 
heaving motion) and 10s (in pure pitching motion), the added 
mass and the added inertia were 1.0667m and 0.7769 Iyy . 
 
 
 
 
 
 
 
 
 

CONCLUSIONS 
 

In this paper, the added mass and inertia derivatives 
obtained by VPMM test, theoretical calculation and CFD 
analysis are described for a spheroid-type UUV. As results, 
the validity of the equipment for VPMM test can be verified 
with a sufficient accuracy. Results with longer period have 
some errors and, therefore if possible, tests at the shortest 
period of the forced oscillation are desirable. 
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