13,090 research outputs found

    Magnetic-field and doping dependence of low-energy spin fluctuations in the antiferroquadrupolar compound Ce(1-x)La(x)B(6)

    Get PDF
    CeB(6) is a model compound exhibiting antiferroquadrupolar (AFQ) order, its magnetic properties being typically interpreted within localized models. More recently, the observation of strong and sharp magnetic exciton modes forming in its antiferromagnetic (AFM) state at both ferromagnetic and AFQ wave vectors suggested a significant contribution of itinerant electrons to the spin dynamics. Here we investigate the evolution of the AFQ excitation upon the application of an external magnetic field and the substitution of Ce with non-magnetic La, both parameters known to suppress the AFM phase. We find that the exciton energy decreases proportionally to T_N upon doping. In field, its intensity is suppressed, while its energy remains constant. Its disappearance above the critical field of the AFM phase is preceded by the formation of two modes, whose energies grow linearly with magnetic field upon entering the AFQ phase. These findings suggest a crossover from itinerant to localized spin dynamics between the two phases, the coupling to heavy-fermion quasiparticles being crucial for a comprehensive description of the magnon spectrum.Comment: Extended version with a longer introduction and an additional figure. 6 pages and 5 figure

    Charge states and magnetic ordering in LaMnO3/SrTiO3 superlattices

    Full text link
    We investigated the magnetic and optical properties of [(LaMnO3)n/(SrTiO3)8]20 (n = 1, 2, and 8) superlattices grown by pulsed laser deposition. We found a weak ferromagnetic and semiconducting state developed in all superlattices. An analysis of the optical conductivity showed that the LaMnO3 layers in the superlattices were slightly doped. The amount of doping was almost identical regardless of the LaMnO3 layer thickness up to eight unit cells, suggesting that the effect is not limited to the interface. On the other hand, the magnetic ordering became less stable as the LaMnO3 layer thickness decreased, probably due to a dimensional effect.Comment: 17 pages including 4 figures, accepted for publication in Phys. Rev.

    Hysteresis and the dynamic phase transition in thin ferromagnetic films

    Full text link
    Hysteresis and the non-equilibrium dynamic phase transition in thin magnetic films subject to an oscillatory external field have been studied by Monte Carlo simulation. The model under investigation is a classical Heisenberg spin system with a bilinear exchange anisotropy in a planar thin film geometry with competing surface fields. The film exhibits a non-equilibrium phase transition between dynamically ordered and dynamically disordered phases characterized by a critical temperature Tcd, whose location of is determined by the amplitude H0 and frequency w of the applied oscillatory field. In the presence of competing surface fields the critical temperature of the ferromagnetic-paramagnetic transition for the film is suppressed from the bulk system value, Tc, to the interface localization-delocalization temperature Tci. The simulations show that in general Tcd < Tci for the model film. The profile of the time-dependent layer magnetization across the film shows that the dynamically ordered and dynamically disordered phases coexist within the film for T < Tcd. In the presence of competing surface fields, the dynamically ordered phase is localized at one surface of the film.Comment: PDF file, 21 pages including 8 figure pages; added references,typos added; to be published in PR

    Exchange anisotropy and the dynamic phase transition in thin ferromagnetic Heisenberg films

    Full text link
    Monte Carlo simulations have been performed to investigate the dependence of the dynamic phase behavior on the bilinear exchange anisotropy of a classical Heisenberg spin system. The system under consideration is a planar thin ferromagnetic film with competing surface fields subject to a pulsed oscillatory external field. The results show that the films exhibit a single discontinuous dynamic phase transition (DPT) as a function of the anisotropy of the bilinear exchange interaction in the Hamiltonian. Furthermore there is no evidence of stochastic resonance (SR) associated with the DPT. These results are in marked contrast to the continuous DPT observed in the same system as a function of temperature and applied field strength for a fixed bilinear exchange anisotropy.Comment: 11 pages including 3 figure pages; submitted to PR

    Segmentation of Loops from Coronal EUV Images

    Get PDF
    We present a procedure which extracts bright loop features from solar EUV images. In terms of image intensities, these features are elongated ridge-like intensity maxima. To discriminate the maxima, we need information about the spatial derivatives of the image intensity. Commonly, the derivative estimates are strongly affected by image noise. We therefore use a regularized estimation of the derivative which is then used to interpolate a discrete vector field of ridge points ``ridgels'' which are positioned on the ridge center and have the intrinsic orientation of the local ridge direction. A scheme is proposed to connect ridgels to smooth, spline-represented curves which fit the observed loops. Finally, a half-automated user interface allows one to merge or split, eliminate or select loop fits obtained form the above procedure. In this paper we apply our tool to one of the first EUV images observed by the SECCHI instrument onboard the recently launched STEREO spacecraft. We compare the extracted loops with projected field lines computed from almost-simultaneously-taken magnetograms measured by the SOHO/MDI Doppler imager. The field lines were calculated using a linear force-free field model. This comparison allows one to verify faint and spurious loop connections produced by our segmentation tool and it also helps to prove the quality of the magnetic-field model where well-identified loop structures comply with field-line projections. We also discuss further potential applications of our tool such as loop oscillations and stereoscopy.Comment: 13 pages, 9 figures, Solar Physics, online firs

    Simple scheme for expanding a polarization-entangled W state by adding one photon

    Full text link
    We propose a simple scheme for expanding a polarization-entangled W state. By mixing a single photon and one of the photons in an n-photon W state at a polarization-dependent beam splitter (PDBS), we can obtain an (n+1)-photon W state after post-selection. Our scheme also opens the door for generating n-photon W states using single photons and linear optics.Comment: 3 pages, 2 figure

    Giant magnetoresistance in ferromagnet/organic semiconductor/ferromagnet heterojunctions

    Get PDF
    We report the spin injection and transport in ferromagnet/organic semiconductor/ferromagnet (FM/OSC/FM) heterojunctions using rubrene (C(42)H(28)) as an organic semiconductor spacer. For completeness of our study, both tunneling magnetoresistance (TMR) and giant magnetoresistance (GMR) were studied by varying the thickness of the rubrene layer (5-30 nm). A thorough study of the device characteristics reveals spin-polarized carrier injection into and subsequent transport through the OSC layer. When the thickness of the rubrene layers are beyond the tunneling limit, the device currents are limited by carrier injection and bulk transport. The carrier injection is well described with phonon-assisted field emission. The behavior of GMR in response to bias field and temperature shows significant differences from that of TMR.open623

    Some Comments on Gravitational Entropy and the Inverse Mean Curvature Flow

    Get PDF
    The Geroch-Wald-Jang-Huisken-Ilmanen approach to the positive energy problem to may be extended to give a negative lower bound for the mass of asymptotically Anti-de-Sitter spacetimes containing horizons with exotic topologies having ends or infinities of the form Σg×R\Sigma_g \times {\Bbb R}, in terms of the cosmological constant. We also show how the method gives a lower bound for for the mass of time-symmetric initial data sets for black holes with vectors and scalars in terms of the mass, Z(Q,P)|Z(Q,P)| of the double extreme black hole with the same charges. I also give a lower bound for the area of an apparent horizon, and hence a lower bound for the entropy in terms of the same function Z(Q,P)|Z(Q,P)|. This shows that the so-called attractor behaviour extends beyond the static spherically symmetric case. and underscores the general importance of the function Z(Q,P)|Z(Q,P)|. There are hints that higher dimensional generalizations may involve the Yamabe conjectures.Comment: 13pp. late

    Investigation of superconducting and normal-state properties of the filled-skutterudite system PrPt4Ge12−xSbx

    Get PDF
    We report a study of the superconducting and normal-state properties of the filled-skutterudite system PrPt4Ge12−xSbx . Polycrystalline samples with Sb concentrations up to x = 5 were synthesized and investigated by means of x-ray diffraction, electrical resistivity, magnetic susceptibility, and specific heat measurements. We observed a suppression of superconductivity with increasing Sb substitution up to x = 4, above which no signature of superconductivity was observed down to 140 mK. The Sommerfeld coefficient, γ , of superconducting specimens decreases with increasing x up to x = 3, suggesting that superconductivity may depend on the density of electronic states in this system. The specific heat for x = 0.5 exhibits an exponential temperature dependence in the superconducting state, reminiscent of a nodeless superconducting energy gap. We observed evidence for a weak “rattling” mode associated with the Pr ions, characterized by an Einstein temperature ΘE ∼ 60 K for 0 ≤ x ≤ 5; however, the rattling mode may not play any role in suppressing superconductivity
    corecore