9 research outputs found

    Corrosion behaviors of SS316L, Ti-Gr.2, Alloy 22 and Cu in KURT groundwater solutions for geological deep disposal

    No full text
    Deep geological disposal using a multibarrier system is a promising solution for treating high-level radioactive (HLRW) waste. The HLRW canister represents the first barrier for the migration of radionuclides into the biosphere, therefore, the corrosion behavior of canister materials is of significance. In this study, the electrochemical behaviors of SS316L, Ti-Gr.2, Alloy 22, and Cu in naturally aerated KAERI underground research tunnel (KURT) groundwater solutions were examined. The corrosion potential, current, and impedance spectra of the test materials were recorded using electrochemical methods. According to polarization and impedance measurements, Cu exhibits relatively higher corrosion rates and a lower corrosion resistance ability than those exhibited by the other materials in the given groundwater condition. In the anodic dissolution tests, SS316L exposed to the groundwater solution exhibited the most uniform corrosion, as indicated by its surface roughness. This phenomenon could be attributed to the extremely low concentration of chloride ions in KURT groundwater

    Alpha Glucosidase Inhibitory Activities of Plants with Focus on Common Vegetables

    No full text
    Type-2 diabetes mellitus is one of the most prevalent metabolic diseases in the world, and is characterized by hyperglycemia (i.e., high levels of glucose in the blood). Alpha-glucosidases are enzymes in the digestive tract that hydrolyze carbohydrates into glucose. One strategy that has been developed to treat type-2 diabetes is inhibition of the activity of alpha-glucosidases using synthetic drugs. However, these inhibitors are usually associated with gastrointestinal side effects. Therefore, the development of inhibitors from natural products offers an alternative option for the control of hyperglycemia. In recent years, various studies have been conducted to identify alpha-glucosidases inhibitors from natural sources such as plants, and many candidates have transpired to be secondary metabolites including alkaloids, flavonoids, phenols, and terpenoids. In this review, we focus on the alpha-glucosidases inhibitors found in common vegetable crops and the major classes of phytochemicals responsible for the inhibitory activity, and also as potential/natural drug candidates for the treatment of type-2 diabetes mellitus. In addition, possible breeding strategies for production of improved vegetable crops with higher content of the inhibitors are also described
    corecore