64 research outputs found

    Bring it to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis

    Get PDF
    Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. Current analysis workflows are typically based on the analysis of team videos. Also, analysts can rely on techniques from Information Visualization, to depict e.g., player or ball trajectories. However, video analysis is typically a time-consuming process, where the analyst needs to memorize and annotate scenes. In contrast, visualization typically relies on an abstract data model, often using abstract visual mappings, and is not directly linked to the observed movement context anymore. We propose a visual analytics system that tightly integrates team sport video recordings with abstract visualization of underlying trajectory data. We apply appropriate computer vision techniques to extract trajectory data from video input. Furthermore, we apply advanced trajectory and movement analysis techniques to derive relevant team sport analytic measures for region, event and player analysis in the case of soccer analysis. Our system seamlessly integrates video and visualization modalities, enabling analysts to draw on the advantages of both analysis forms. Several expert studies conducted with team sport analysts indicate the effectiveness of our integrated approach

    Human mesenchymal stromal cells inhibit platelet activation and aggregation involving CD73-converted adenosine

    Get PDF
    Background: Mesenchymal stromal cells (MSCs) are promising cell therapy candidates. Clinical application is considered safe. However, minor side effects have included thromboembolism and instant blood-mediated inflammatory reactions suggesting an effect of MSC infusion on hemostasis. Previous studies focusing on plasmatic coagulation as a secondary hemostasis step detected both procoagulatory and anticoagulatory activities of MSCs. We now focus on primary hemostasis and analyzed whether MSCs can promote or inhibit platelet activation. Methods: Effects of MSCs and MSC supernatant on platelet activation and function were studied using flow cytometry and further platelet function analyses. MSCs from bone marrow (BM), lipoaspirate (LA) and cord blood (CB) were compared to human umbilical vein endothelial cells or HeLa tumor cells as inhibitory or activating cells, respectively. Results: BM-MSCs and LA-MSCs inhibited activation and aggregation of stimulated platelets independent of the agonist used. This inhibitory effect was confirmed in diagnostic point-of-care platelet function analyses in platelet-rich plasma and whole blood. Using inhibitors of the CD39–CD73–adenosine axis, we showed that adenosine produced by CD73 ectonucleotidase activity was largely responsible for the LA-MSC and BM-MSC platelet inhibitory action. With CB-MSCs, batch-dependent responses were obvious, with some batches exerting inhibition and others lacking this effect. Conclusions: Studies focusing on plasmatic coagulation suggested both procoagulatory and anticoagulatory activities of MSCs. We now show that MSCs can, dependent on their tissue origin, inhibit platelet activation involving adenosine converted from adenosine monophosphate by CD73 ectonucleotidase activity. These data may have strong implications for safety and risk/benefit assessment regarding MSCs from different tissue sources and may help to explain the tissue protective mode of action of MSCs. The adenosinergic pathway emerges as a key mechanism by which MSCs exert hemostatic and immunomodulatory functions

    First-principles study of TMNan (TM= Cr, Mn, Fe, Co, Ni; n = 4-7) clusters

    Full text link
    Geometry, electronic structure, and magnetic properties of TMNan (TM=Cr-Ni; n = 4-7) clusters are studied within a gradient corrected density functional theory (DFT) framework. Two complementary approaches, the first adapted to all-electron calculations on free clusters, and the second been on plane wave projector augmented wave (PAW) method within a supercell approach are used. Except for NiNan, the clusters in this series are found to retain the atomic moments of the TM atoms, and the magnetic moment presented an odd-even oscillation with respect to the number of Na atoms. The origin of these odd-even oscillations is explained from the nature of chemical bonding in these clusters. Differences and similarities between the chemical bonding and the magnetic properties of these clusters and the TMNan (TM = Sc, V and Ti; n = 4-6) clusters on one hand, and TM-doped Au and Ag clusters on the other hand, are discussed

    Model-Based Methods for Assessment, Learning, and Instruction: Innovative Educational Technology at Florida State University

    Full text link
    Abstract In this chapter, we describe our research and development efforts relating to eliciting, representing, and analyzing how individuals and small groups conceptualize complex problems. The methods described herein have all been devel-oped and are in various states of being validated. In addition, the methods we describe have been automated and most have been integrated in an online model-based set of tools called HIMATT (Highly Interactive Model-based Assessment Tools and Technologies; available for research purposes a

    Soils as Witnesses of Natural and Anthropogenic Processes

    No full text
    corecore