5 research outputs found

    Histopathological analysis of the synovium in trapeziometacarpal osteoarthritis

    Get PDF
    Dorsoradial and anterior oblique ligaments were harvested during surgery in 13 patients with symptomatic trapeziometacarpal osteoarthritis, which had been graded preoperatively by a modified Eaton-Littler radiographic grading. Ligaments, including the periligamentous synovium, were stained with S100 protein, neurotrophic receptor p75, protein gene product 9.5, calcitonin gene related peptide, acetylcholine, substance P, neuropeptide Y, noradrenaline, N-methyl-D-aspartate-receptor and Met/Leu-enkephalin. The synovium was classified as showing no, low-grade or high-grade synovitis. Free nerve endings had higher immunoreactivity for substance P than for N-methyl-D-aspartate-receptor, enkephalin and noradrenaline. The synovial stroma had less immunoreactivity for N-methyl-D-aspartate-receptor than for noradrenaline, substance P and calcitonin gene related peptide. There was no relation between the grade of osteoarthritis and the visual pain analogue scale, synovitis score, immunoreactivity of all antibodies and quantity of free nerve endings or blood vessels. Synovium in trapeziometacarpal joint osteoarthritis produces several neuromediators causing a polymodal neurogenic inflammation and which may serve as biomarkers for osteoarthritis or therapeutic targets

    Altered Innervation Pattern in Ligaments of Patients with Basal Thumb Arthritis

    Full text link
    detail, courtyard, view of the stairway to the second level, August 199

    Conversion of Human Fibroblasts to Functional Endothelial Cells by Defined Factors

    No full text
    OBJECTIVE: Transdifferentiation of fibroblasts to endothelial cells (ECs) may provide a novel therapeutic avenue for diseases including ischemia and fibrosis. Here we demonstrate that human fibroblasts can be transdifferentiated into functional ECs by using only two factors, Oct4 and Klf4, under inductive signaling conditions. APPROACH AND RESULTS: To determine if human fibroblasts could be converted into ECs by transient expression of pluripotency factors, human neonatal fibroblasts were transduced with lentiviruses encoding Oct4 and Klf4 in the presence of soluble factors that promote the induction of an endothelial program. After 28 days, clusters of induced endothelial (iEnd) cells appeared and were isolated for further propagation and subsequent characterization. The iEnd cells resembled primary human ECs in their transcriptional signature by expressing endothelial phenotypic markers such as CD31, VE-cadherin, and von Willebrand Factor. Furthermore, the iEnd cells could incorporate acetylated low density lipoprotein, and form vascular structures in vitro and in vivo. When injected into the ischemic limb of mice, the iEnd cells engrafted, increased capillary density, and enhanced tissue perfusion. During the transdifferentiation process, the endogenous pluripotency network was not activated, suggesting that this process bypassed a pluripotent intermediate step. CONCLUSIONS: Pluripotent factor–induced transdifferentiation can be successfully applied for generating functional autologous ECs for therapeutic applications
    corecore