67 research outputs found

    Hurricanes and hashtags: Characterizing online collective attention for natural disasters

    Full text link
    We study collective attention paid towards hurricanes through the lens of nn-grams on Twitter, a social media platform with global reach. Using hurricane name mentions as a proxy for awareness, we find that the exogenous temporal dynamics are remarkably similar across storms, but that overall collective attention varies widely even among storms causing comparable deaths and damage. We construct `hurricane attention maps' and observe that hurricanes causing deaths on (or economic damage to) the continental United States generate substantially more attention in English language tweets than those that do not. We find that a hurricane's Saffir-Simpson wind scale category assignment is strongly associated with the amount of attention it receives. Higher category storms receive higher proportional increases of attention per proportional increases in number of deaths or dollars of damage, than lower category storms. The most damaging and deadly storms of the 2010s, Hurricanes Harvey and Maria, generated the most attention and were remembered the longest, respectively. On average, a category 5 storm receives 4.6 times more attention than a category 1 storm causing the same number of deaths and economic damage.Comment: 31 pages (14 main, 17 Supplemental), 19 figures (5 main, 14 appendix

    Storywrangler: A massive exploratorium for sociolinguistic, cultural, socioeconomic, and political timelines using Twitter

    Get PDF
    In real-time, Twitter strongly imprints world events, popular culture, and the day-to-day; Twitter records an ever growing compendium of language use and change; and Twitter has been shown to enable certain kinds of prediction. Vitally, and absent from many standard corpora such as books and news archives, Twitter also encodes popularity and spreading through retweets. Here, we describe Storywrangler, an ongoing, day-scale curation of over 100 billion tweets containing around 1 trillion 1-grams from 2008 to 2020. For each day, we break tweets into 1-, 2-, and 3-grams across 150+ languages, record usage frequencies, and generate Zipf distributions. We make the data set available through an interactive time series viewer, and as downloadable time series and daily distributions. We showcase a few examples of the many possible avenues of study we aim to enable including how social amplification can be visualized through ‘contagiograms’

    Rare Decays of the η′\eta^{'}

    Full text link
    We have searched for the rare decays of the eta prime meson to e+ e- eta, e+ e- pizero, e+ e- gamma, and e mu in hadronic events at the CLEO II detector. The search is conducted on 4.80 fb^-1 of e+ e- collisions at the Cornell Electron Storage Ring. We find no signal in any of these modes, and set 90% confidence level upper limits on their branching fractions of 2.4 X 10^-3, 1.4 X 10^-3, 0.9 X 10^-3, and 4.7 X 10^-4, respectively. We also investigate the Dalitz plot of the common decay of the eta prime to pi+ pi- eta. We fit the matrix element with the Particle Data Group parameterization and find Re(alpha) = -0.021 +- 0.025, where alpha is a linear function of the kinetic energy of the eta.Comment: 12 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The Femme Fatale in Vogue:Femininity Ideologies in Fin-de-siècle America

    Get PDF
    This article explores how marketing influences ideologies of femininity. Tracing the evolution of femme fatale images in Vogue magazine in 1890s America, we develop a typology around four archetypal forms of the femme fatale that prevailed during this period. In doing so we respond to calls for more critical historical analyses on femininity. While studies on masculinity ideologies proliferate, there is a paucity of research on dissonant representations of femininity in popular culture media. The femme fatale, often a self-determined seductress who causes anguish to the men who become involved with her, is an intriguing and enduring challenge to traditional notions of femininity. Thus, in studying the femme fatale in her historical context and revealing the multiplicity of feminine ideologies contained within this trope, we contribute to a deeper understanding of marketing’s role in both reflecting and reinforcing societal assumptions, attitudes and problematics around gender norms.</p

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
    • …
    corecore