37 research outputs found
Lactation transcriptomics in the Australian marsupial, Macropus eugenii: transcript sequencing and quantification
<p>Abstract</p> <p>Background</p> <p>Lactation is an important aspect of mammalian biology and, amongst mammals, marsupials show one of the most complex lactation cycles. Marsupials, such as the tammar wallaby (<it>Macropus eugenii</it>) give birth to a relatively immature newborn and progressive changes in milk composition and milk production regulate early stage development of the young.</p> <p>Results</p> <p>In order to investigate gene expression in the marsupial mammary gland during lactation, a comprehensive set of cDNA libraries was derived from lactating tissues throughout the lactation cycle of the tammar wallaby. A total of 14,837 express sequence tags were produced by cDNA sequencing. Sequence analysis and sequence assembly were used to construct a comprehensive catalogue of mammary transcripts.</p> <p>Sequence data from pregnant and early or late lactating specific cDNA libraries and, data from early or late lactation massively parallel sequencing strategies were combined to analyse the variation of milk protein gene expression during the lactation cycle.</p> <p>Conclusion</p> <p>Results show a steady increase in expression of genes coding for secreted protein during the lactation cycle that is associated with high proportion of transcripts coding for milk proteins. In addition, genes involved in immune function, translation and energy or anabolic metabolism are expressed across the lactation cycle. A number of potential new milk proteins or mammary gland remodelling markers, including noncoding RNAs have been identified.</p
Ancient Antimicrobial Peptides Kill Antibiotic-Resistant Pathogens: Australian Mammals Provide New Options
Background: To overcome the increasing resistance of pathogens to existing antibiotics the 10× 20 Initiative declared the urgent need for a global commitment to develop 10 new antimicrobial drugs by the year 2020. Naturally occurring animal antibiotics are an obvious place to start. The recently sequenced genomes of mammals that are divergent from human and mouse, including the tammar wallaby and the platypus, provide an opportunity to discover novel antimicrobials. Marsupials and monotremes are ideal potential sources of new antimicrobials because they give birth to underdeveloped immunologically naïve young that develop outside the sterile confines of a uterus in harsh pathogen-laden environments. While their adaptive immune system develops innate immune factors produced either by the mother or by the young must play a key role in protecting the immune-compromised young. In this study we focus on the cathelicidins, a key family of antimicrobial peptide genes. Principal Finding: We identified 14 cathelicidin genes in the tammar wallaby genome and 8 in the platypus genome. The tammar genes were expressed in the mammary gland during early lactation before the adaptive immune system of the young develops, as well as in the skin of the pouch young. Both platypus and tammar peptides were effective in killing a broad range of bacterial pathogens. One potent peptide, expressed in the early stages of tammar lactation, effectively killed multidrug-resistant clinical isolates of Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. Conclusions and Significance: Marsupial and monotreme young are protected by antimicrobial peptides that are potent, broad spectrum and salt resistant. The genomes of our distant relatives may hold the key for the development of novel drugs to combat multidrug-resistant pathogens
Hidden in the Middle : Culture, Value and Reward in Bioinformatics
Bioinformatics - the so-called shotgun marriage between biology and computer science - is an interdiscipline. Despite interdisciplinarity being seen as a virtue, for having the capacity to solve complex problems and foster innovation, it has the potential to place projects and people in anomalous categories. For example, valorised 'outputs' in academia are often defined and rewarded by discipline. Bioinformatics, as an interdisciplinary bricolage, incorporates experts from various disciplinary cultures with their own distinct ways of working. Perceived problems of interdisciplinarity include difficulties of making explicit knowledge that is practical, theoretical, or cognitive. But successful interdisciplinary research also depends on an understanding of disciplinary cultures and value systems, often only tacitly understood by members of the communities in question. In bioinformatics, the 'parent' disciplines have different value systems; for example, what is considered worthwhile research by computer scientists can be thought of as trivial by biologists, and vice versa. This paper concentrates on the problems of reward and recognition described by scientists working in academic bioinformatics in the United Kingdom. We highlight problems that are a consequence of its cross-cultural make-up, recognising that the mismatches in knowledge in this borderland take place not just at the level of the practical, theoretical, or epistemological, but also at the cultural level too. The trend in big, interdisciplinary science is towards multiple authors on a single paper; in bioinformatics this has created hybrid or fractional scientists who find they are being positioned not just in-between established disciplines but also in-between as middle authors or, worse still, left off papers altogether
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Phase contrast X-ray imaging of the developing tammar wallaby using a synchrotron radiation source.
<p>Anterior-posterior (top) and lateral (bottom) views of tammar wallaby pouch young aged 36 hours (A), 10 (B) and 20 (C) postpartum days. All animals are positioned such that the skull is at the top of each image. White areas indicate the less dense, air-filled lung and trachea. Thirty-six hours after birth, the lungs of the tammar wallaby are simple and saccular in structure (A). The lung increases in complexity by P10 (B) and further again by P20 (C) with an increase in the number of air sacs and a decrease in the size of these air sacs. Scale bar represents 1 mm.</p
Surface area of the lung as a function of body mass during postnatal development.
<p>The air-tissue interface during postnatal lung development of the fat-tailed dunnart and tammar wallaby is less than that predicted from the allometric equation. This is in line with other marsupials, and most likely due to the fact that alveolarisation and the subsequent increase in surface area by septation does not commence until after P70 in the tammar wallaby and P45 in the fat-tailed dunnart. Symbols, lines and references as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0053805#pone-0053805-g004" target="_blank">Figure 4</a>.</p
Lung volume and surface area on the first day of postnatal life in the tammar wallaby and fat-tailed dunnart, calculated from computed tomography datasets obtained using a synchrotron radiation source.
<p>Data for the tammar wallaby is expressed as mean (standard deviation).</p
3-Dimensional volume rendering from fat-tailed dunnart computed tomography data sets.
<p>Shown are three frames captured over 90 degrees of lung rotation. The series consists of an anterior view (A), a lateral view (C) and the mid-point between them (B), further demonstrating the increase in air sac number, and changes to air sac shape throughout the first weeks of lung development in the fat-tailed dunnart. Scale bar represents 200 µm.</p