20 research outputs found

    SOAT1: a suitable target for therapy in high-grade astrocytic glioma?

    Get PDF
    Targeting molecular alterations as an effective treatment for isocitrate dehydrogenase-wildtype glioblastoma (GBM) patients has not yet been established. Sterol-O-Acyl Transferase 1 (SOAT1), a key enzyme in the conversion of endoplasmic reticulum cholesterol to esters for storage in lipid droplets (LD), serves as a target for the orphan drug mitotane to treat adrenocortical carcinoma. Inhibition of SOAT1 also suppresses GBM growth. Here, we refined SOAT1-expression in GBM and IDH-mutant astrocytoma, CNS WHO grade 4 (HGA), and assessed the distribution of LD in these tumors. Twenty-seven GBM and three HGA specimens were evaluated by multiple GFAP, Iba1, IDH1 R132H, and SOAT1 immunofluorescence labeling as well as Oil Red O staining. To a small extent SOAT1 was expressed by tumor cells in both tumor entities. In contrast, strong expression was observed in glioma-associated macrophages. Triple immunofluorescence labeling revealed, for the first time, evidence for SOAT1 colocalization with Iba1 and IDH1 R132H, respectively. Furthermore, a notable difference in the amount of LD between GBM and HGA was observed. Therefore, SOAT1 suppression might be a therapeutic option to target GBM and HGA growth and invasiveness. In addition, the high expression in cells related to neuroinflammation could be beneficial for a concomitant suppression of protumoral microglia/macrophages

    SOAT1: A Suitable Target for Therapy in High-Grade Astrocytic Glioma?

    Get PDF
    Targeting molecular alterations as an effective treatment for isocitrate dehydrogenasewildtype glioblastoma (GBM) patients has not yet been established. Sterol-O-Acyl Transferase 1 (SOAT1), a key enzyme in the conversion of endoplasmic reticulum cholesterol to esters for storage in lipid droplets (LD), serves as a target for the orphan drug mitotane to treat adrenocortical carcinoma. Inhibition of SOAT1 also suppresses GBM growth. Here, we refined SOAT1-expression in GBM and IDH-mutant astrocytoma, CNS WHO grade 4 (HGA), and assessed the distribution of LD in these tumors. Twenty-seven GBM and three HGA specimens were evaluated by multiple GFAP, Iba1, IDH1 R132H, and SOAT1 immunofluorescence labeling as well as Oil Red O staining. To a small extent SOAT1 was expressed by tumor cells in both tumor entities. In contrast, strong expression was observed in glioma-associated macrophages. Triple immunofluorescence labeling revealed, for the first time, evidence for SOAT1 colocalization with Iba1 and IDH1 R132H, respectively. Furthermore, a notable difference in the amount of LD between GBM and HGA was observed. Therefore, SOAT1 suppression might be a therapeutic option to target GBM and HGA growth and invasiveness. In addition, the high expression in cells related to neuroinflammation could be beneficial for a concomitant suppression of protumoral microglia/macrophages

    Metabolic adaptation of acute lymphoblastic leukemia to the central nervous system microenvironment depends on Stearoyl CoA desaturase

    Get PDF
    Metabolic reprogramming is a key hallmark of cancer, but less is known about metabolic plasticity of the same tumor at different sites. Here, we investigated the metabolic adaptation of leukemia in two different microenvironments, the bone marrow and the central nervous system (CNS). We identified a metabolic signature of fatty acid synthesis in CNS leukemia, highlighting stearoyl-CoA desaturase (SCD) as a key player. In vivo SCD overexpression increases CNS disease, whereas genetic or pharmacological inhibition of SCD decreases CNS load. Overall, we demonstrated that leukemic cells dynamically rewire metabolic pathways to suit local conditions and that targeting these adaptations can be exploited therapeutically

    Analyse der molekularen Mechanismen, die der Rolle von SREBP1 bei der Entwicklung und Progression von Glioblastom-Tumoren zugrunde liegen

    No full text
    Glioblastoma (GB) is the most aggressive malignant adult brain tumour with a median survival rate of only 15 months. GB tumours are characterized by necrotic and hypoxic core, which leads to nutrient deficient areas contributing to invasive, diffuseinfiltrative and angiogenic nature of these tumours. Cells exposed to nutrient deficient conditions and are known to reprogram their metabolism to produce or procure macro molecules from their environment. This makes cancer cells uniquely dependent on transcriptional regulators and a window of opportunity to target them. Sterol regulatory element binding protein 1 (SREBP1) is a transcriptional regulator of de-novo fatty acid synthesis in cells. The aim of this thesis was to investigate if SREBP1 was involved in restructuring the transcriptional regulation of genes involved in fatty acid biosynthesis upon low serum condition, in mediating interaction with other cell types in the tumour bulk such as endothelial cells, in regulating cancer stem like cells and finally to study its upstream regulation in GB. Global transcriptional analysis on GB cells exposed to low serum conditions revealed that SREBP1 regulated several fatty acid biosynthesis and phospholipid metabolic processes. PLA2G3 was identified as a novel target of SREBP1 in GB that was uniquely regulated in low serum condition. Analysis of total fatty acid and lipid species revealed that loss of SREBP1 in low serum condition changes the proportion of saturated, MUFAs and PUFAs. These changes were not specific to loss of PLA2G3 but as a result of downregulation of many genes regulated by SREBP1 in the fatty acid biosynthetic pathway. Next, treatment of HUVEC’s (endothelial cells) with condition medium from SREBP1-silenced U87 cells inhibited sprouting and tube formation capacity compared to the control condition, emphasizing the role of SREBP1 in angiogenesis and release of signalling mediators. Further, SREBP1 was shown to be important for proliferation of patient derived stem like cells and becomes indispensable for forming neurospheres in long term cultures, indicating its role in maintaining stemness. Also, inhibition of SREBP function by blocking the esterification of cholesterol using inhibitors targeting SOAT1 showed impairment in the viability of GB cells exposed to serum-depleted condition. Overall, SREBP1 plays an important role in maintaining tumour growth in nutrient deficient conditions and help in interaction with tumour microenvironment contributing to the aggressiveness of this tumour and poses itself as an attractive and unique target for GB treatmentDas Glioblastoma (GB) ist der aggressivste bösartige Gehirntumor bei Erwachsenen mit einer medianen Überlebensrate von nur 15 Monaten. GB-Tumore zeichnen sich durch einen nekrotischen und hypoxischen Kern aus, der zu nährstoffarmen Bereichen führt, die zu invasiven, diffus-infiltrierenden und angiogenen Natur dieser Tumore beitragen. Zellen, die einem Nährstoffmangel ausgesetzt sind, sind dafür bekannt, ihren Stoffwechsel umzuprogrammieren, um Makromoleküle zu produzieren oder diese aus ihrer Umgebung zu beziehen. Dies macht Krebszellen in einzigartiger Weise abhängig von Transkriptionsregulatoren und eröffnet die Möglichkeit diese gezielt anzugreifen. Das sterol regulatory element binding protein 1 (SREBP1) ist ein Transkriptionsregulator der de-novo Fettsäuresynthese in Zellen. Das Ziel dieser Arbeit war es zu erforschen, ob SREBP1 an der Umstrukturierung der Transkriptionsregulation der Gene involviert ist, die unter niedrigen Serumbedingungen an der Fettsäurebiosynthese beteiligt sind. Des Weiteren richtete sich die Arbeit darauf, ob SREBP1 die Interaktion mit anderen Zelltypen im Tumor wie den Endothelzellen vermittelt, ob es die stammzellähnlichen Krebszellen reguliert und letztlich, dessen Stromaufwärts-Regulierung in GB zu untersuchen. Eine globale Transkriptionsanalyse von GB-Zellen, die niedrigen Serumbedingungen ausgesetzt waren, ergab, dass SREBP1 mehrere Fettsäurebiosynthese- und Phospholipid-Stoffwechselprozesse reguliert. Dabei wurde PLA2G3 als ein neuartiges Ziel von SREBP1 in GB identifiziert, welches unter geringen Serumbedingungen auf einzigartige Weise reguliert wurde. Die Analyse der gesamten Fettsäure- und Lipidspezies ergab, dass der Verlust von SREBP1 unter niedrigen Serumbedingungen das Verhältnis zwischen gesättigten, MUFAs und PUFAs verändert. Diese Veränderungen waren nicht spezifisch auf den Verlust von PLA2G3 zurückzuführen, sondern eine Folge der Herunterregulierung vieler Gene, die im Fettsäurebiosyntheseweg durch SREBP1 reguliert werden. Als Nächstes zeigte die Behandlung von HUVECs (Endothelzellen) mit dem konditionierten Medium von SREBP1-stillgelegten U87 Zellen, dass die Sprieß- und Röhrenbildungsfähigkeit im Vergleich zur Kontrollbedingung gehemmt war. Dies unterstreicht die Rolle von SREBP1 bei der Angiogenese und der Freisetzung von Signalmediatoren. Außerdem wurde nachgewiesen, dass SREBP1 wichtig für die Proliferation von aus Patienten stammenden stammzellähnlichen Zellen und für die Bildung von Neurosphären in Langzeitkulturen unverzichtbar ist, was auf die Rolle von SREBP1 bei der Aufrechterhaltung der Stammzellfähigkeit hindeutet. Auch die Hemmung der SREBP Funktion durch die Blockierung der Veresterung von Cholesterin mittels SOAT1-Inhibitoren wies eine Beeinträchtigung der Lebensfähigkeit von GB-Zellen auf, die einer serumarmen Bedingung ausgesetzt waren. Zusammenfassend zeigt diese Arbeit, dass SREBP1 eine wichtige Rolle in der Aufrechterhaltung des Tumorwachstums unter nährstoffarmen Bedingungen und bei der Interaktion mit der Tumormikroumgebung spielt, die zur Aggressivität des Tumors beiträgt und sich somit als ein attraktives und einzigartiges Ziel für die Behandlung von GB darstellt

    Neutral Sphingomyelinase-2 (NSM 2) Controls T Cell Metabolic Homeostasis and Reprogramming During Activation

    No full text
    Neutral sphingomyelinase-2 (NSM2) is a member of a superfamily of enzymes responsible for conversion of sphingomyelin into phosphocholine and ceramide at the cytosolic leaflet of the plasma membrane. Upon specific ablation of NSM2, T cells proved to be hyper-responsive to CD3/CD28 co-stimulation, indicating that the enzyme acts to dampen early overshooting activation of these cells. It remained unclear whether hyper-reactivity of NSM2-deficient T cells is supported by a deregulated metabolic activity in these cells. Here, we demonstrate that ablation of NSM2 activity affects metabolism of the quiescent CD4+^+ T cells which accumulate ATP in mitochondria and increase basal glycolytic activity. This supports enhanced production of total ATP and metabolic switch early after TCR/CD28 stimulation. Most interestingly, increased metabolic activity in resting NSM2-deficient T cells does not support sustained response upon stimulation. While elevated under steady-state conditions in NSM2-deficient CD4+^+ T cells, the mTORC1 pathway regulating mitochondria size, oxidative phosphorylation, and ATP production is impaired after 24 h of stimulation. Taken together, the absence of NSM2 promotes a hyperactive metabolic state in unstimulated CD4+^+ T cells yet fails to support sustained T cell responses upon antigenic stimulation

    Trazodone rescues dysregulated synaptic and mitochondrial nascent proteomes in prion neurodegeneration

    No full text
    The unfolded protein response (UPR) is rapidly gaining momentum as a therapeutic target for protein misfolding neurodegenerative diseases, in which its overactivation results in sustained translational repression leading to synapse loss and neurodegeneration. In mouse models of these disorders, from Alzheimer’s to prion disease, modulation of the pathway—including by the licensed drug, trazodone—restores global protein synthesis rates with profound neuroprotective effects. However, the precise nature of the translational impairment, in particular the specific proteins affected in disease, and their response to therapeutic UPR modulation are poorly understood. We used non-canonical amino acid tagging (NCAT) to measure de novo protein synthesis in the brains of prion-diseased mice with and without trazodone treatment, in both whole hippocampus and cell-specifically. During disease the predominant nascent proteome changes occur in synaptic, cytoskeletal and mitochondrial proteins in both hippocampal neurons and astrocytes. Remarkably, trazodone treatment for just 2 weeks largely restored the whole disease nascent proteome in the hippocampus to that of healthy, uninfected mice, predominantly with recovery of proteins involved in synaptic and mitochondrial function. In parallel, trazodone treatment restored the disease-associated decline in synapses and mitochondria and their function to wild-type levels. In conclusion, this study increases our understanding of how translational repression contributes to neurodegeneration through synaptic and mitochondrial toxicity via depletion of key proteins essential for their function. Further, it provides new insights into the neuroprotective mechanisms of trazodone through reversal of this toxicity, relevant for the treatment of neurodegenerative diseases via translational modulation.Sección Deptal. de Bioquímica y Biología Molecular (Veterinaria)Fac. de VeterinariaTRUEpu

    c-Myc plays a key role in IFN-γ-induced persistence of Chlamydia trachomatis

    No full text
    Chlamydia trachomatis (Ctr) can persist over extended times within their host cell and thereby establish chronic infections. One of the major inducers of chlamydial persistence is interferon-gamma (IFN-γ) released by immune cells as a mechanism of immune defence. IFN-γ activates the catabolic depletion of L-tryptophan (Trp) via indoleamine-2,3-dioxygenase (IDO), resulting in persistent Ctr. Here, we show that IFN-γ induces the downregulation of c-Myc, the key regulator of host cell metabolism, in a STAT1-dependent manner. Expression of c-Myc rescued Ctr from IFN-γ-induced persistence in cell lines and human fallopian tube organoids. Trp concentrations control c-Myc levels most likely via the PI3K-GSK3β axis. Unbiased metabolic analysis revealed that Ctr infection reprograms the host cell tricarboxylic acid (TCA) cycle to support pyrimidine biosynthesis. Addition of TCA cycle intermediates or pyrimidine/purine nucleosides to infected cells rescued Ctr from IFN-γ-induced persistence. Thus, our results challenge the longstanding hypothesis of Trp depletion through IDO as the major mechanism of IFN-γ-induced metabolic immune defence and significantly extends the understanding of the role of IFN-γ as a broad modulator of host cell metabolism

    Integrated metabolomics and transcriptomics analysis of monolayer and neurospheres from established glioblastoma cell lines

    Get PDF
    Altered metabolic processes contribute to carcinogenesis by modulating proliferation, survival and differentiation. Tumours are composed of different cell populations, with cancer stem-like cells being one of the most prominent examples. This specific pool of cells is thought to be responsible for cancer growth and recurrence and plays a particularly relevant role in glioblastoma (GBM), the most lethal form of primary brain tumours. Here, we have analysed the transcriptome and metabolome of an established GBM cell line (U87) and a patient-derived GBM stem-like cell line (NCH644) exposed to neurosphere or monolayer culture conditions. By integrating transcriptome and metabolome data, we identified key metabolic pathways and gene signatures that are associated with stem-like and differentiated states in GBM cells, and demonstrated that neurospheres and monolayer cells differ substantially in their metabolism and gene regulation. Furthermore, arginine biosynthesis was identified as the most significantly regulated pathway in neurospheres, although individual nodes of this pathway were distinctly regulated in the two cellular systems. Neurosphere conditions, as opposed to monolayer conditions, cause a transcriptomic and metabolic rewiring that may be crucial for the regulation of stem-like features, where arginine biosynthesis may be a key metabolic pathway. Additionally, TCGA data from GBM patients showed significant regulation of specific components of the arginine biosynthesis pathway, providing further evidence for the importance of this metabolic pathway in GBM

    The Influence of Met Receptor Level on HGF-Induced Glycolytic Reprogramming in Head and Neck Squamous Cell Carcinoma

    No full text
    Head and neck squamous cell carcinoma (HNSCC) is known to overexpress a variety of receptor tyrosine kinases, such as the HGF receptor Met. Like other malignancies, HNSCC involves a mutual interaction between the tumor cells and surrounding tissues and cells. We hypothesized that activation of HGF/Met signaling in HNSCC influences glucose metabolism and therefore substantially changes the tumor microenvironment. To determine the effect of HGF, we submitted three established HNSCC cell lines to mRNA sequencing. Dynamic changes in glucose metabolism were measured in real time by an extracellular flux analyzer. As expected, the cell lines exhibited different levels of Met and responded differently to HGF stimulation. As confirmed by mRNA sequencing, the level of Met expression was associated with the number of upregulated HGF-dependent genes. Overall, Met stimulation by HGF leads to increased glycolysis, presumably mediated by higher expression of three key enzymes of glycolysis. These effects appear to be stronger in Methigh^{high}-expressing HNSCC cells. Collectively, our data support the hypothesized role of HGF/Met signaling in metabolic reprogramming of HNSCC

    SOAT1: A Suitable Target for Therapy in High-Grade Astrocytic Glioma?

    No full text
    Targeting molecular alterations as an effective treatment for isocitrate dehydrogenasewildtype glioblastoma (GBM) patients has not yet been established. Sterol-O-Acyl Transferase 1 (SOAT1), a key enzyme in the conversion of endoplasmic reticulum cholesterol to esters for storage in lipid droplets (LD), serves as a target for the orphan drug mitotane to treat adrenocortical carcinoma. Inhibition of SOAT1 also suppresses GBM growth. Here, we refined SOAT1-expression in GBM and IDH-mutant astrocytoma, CNS WHO grade 4 (HGA), and assessed the distribution of LD in these tumors. Twenty-seven GBM and three HGA specimens were evaluated by multiple GFAP, Iba1, IDH1 R132H, and SOAT1 immunofluorescence labeling as well as Oil Red O staining. To a small extent SOAT1 was expressed by tumor cells in both tumor entities. In contrast, strong expression was observed in glioma-associated macrophages. Triple immunofluorescence labeling revealed, for the first time, evidence for SOAT1 colocalization with Iba1 and IDH1 R132H, respectively. Furthermore, a notable difference in the amount of LD between GBM and HGA was observed. Therefore, SOAT1 suppression might be a therapeutic option to target GBM and HGA growth and invasiveness. In addition, the high expression in cells related to neuroinflammation could be beneficial for a concomitant suppression of protumoral microglia/macrophages
    corecore