22 research outputs found

    Human middle temporal cortex, perceptual bias, and perceptual memory for ambiguous three-dimensional motion

    Get PDF
    When faced with inconclusive or conflicting visual input human observers experience one of multiple possible perceptions. One factor that determines perception of such an ambiguous stimulus is how the same stimulus was perceived on previous occasions, a phenomenon called perceptual memory. We examined perceptual memory of an ambiguous motion stimulus while applying transcranial magnetic stimulation (TMS) to the motion-sensitive areas of the middle temporal cortex (hMT+). TMS increased the predominance of whichever perceptual interpretation was most commonly reported by a given observer at baseline, with reduced perception of the less favored interpretation. This increased incidence of the preferred percept indicates impaired long-term buildup of perceptual memory traces that normally act against individual percept biases. We observed no effect on short-term memory traces acting from one presentation to the next. Our results indicate that hMT+ is important for the long-term buildup of perceptual memory for ambiguous motion stimuli

    How to Build a Dichoptic Presentation System That Includes an Eye Tracker

    Get PDF
    The presentation of different stimuli to the two eyes, dichoptic presentation, is essential for studies involving 3D vision and interocular suppression. There is a growing literature on the unique experimental value of pupillary and oculomotor measures, especially for research on interocular suppression. Although obtaining eye-tracking measures would thus benefit studies that use dichoptic presentation, the hardware essential for dichoptic presentation (e.g. mirrors) often interferes with high-quality eye tracking, especially when using a video-based eye tracker. We recently described an experimental setup that combines a standard dichoptic presentation system with an infrared eye tracker by using infrared-transparent mirrors1. The setup is compatible with standard monitors and eye trackers, easy to implement, and affordable (on the order of US$1,000). Relative to existing methods it has the benefits of not requiring special equipment and posing few limits on the nature and quality of the visual stimulus. Here we provide a visual guide to the construction and use of our setup

    Dichoptic vision in the absence of attention: neither fusion nor rivalry

    Get PDF
    When the two eyes’ processing streams meet in visual cortex, two things can happen: sufficiently similar monocular inputs are combined into a fused representation, whereas markedly different inputs engage in rivalry. Interestingly, the emergence of rivalry appears to require attention. Withdrawing attention causes the alternating monocular dominance that characterizes rivalry to cease, apparently allowing both monocular signals to be processed simultaneously. What happens to these signals in this case, however, remains something of a mystery; are they fused into an integrated representation? In a set of experiments, we show this not to be the case: visual aftereffects are consistent with the simultaneous yet separate presence of two segregated monocular representations, rather than a joint representation. These results provide evidence that dichoptic vision without attention prompts a third and previously unknown mode, where both eyes’ inputs receive equal processing, but escape interocular fusion

    A Dissociation of Attention and Awareness in Phase-sensitive but Not Phase-insensitive Visual Channels

    Get PDF
    The elements most vivid in our conscious awareness are the ones to which we direct our attention. Scientific study confirms the impression of a close bond between selective attention and visual awareness, yet the nature of this association remains elusive. Using visual afterimages as an index, we investigate neural processing of stimuli as they enter awareness and as they become the object of attention. We find evidence of response enhancement accompanying both attention and awareness, both in the phase-sensitive neural channels characteristic of early processing stages and in the phase-insensitive channels typical of higher cortical areas. The effects of attention and awareness on phase-insensitive responses are positively correlated, but in the same experiments, we observe no correlation between the effects on phase-sensitive responses. This indicates independent signatures of attention and awareness in early visual areas yet a convergence of their effects at more advanced processing stages

    Individual differences point to two separate processes involved in the resolution of binocular rivalry

    Get PDF
    Although binocular rivalry is different from other perceptually bistable phenomena in requiring interocular conflict, it also shares numerous features with those phenomena. This raises the question of whether, and to what extent, the neural bases of binocular rivalry and other bistable phenomena overlap. Here we examine this question using an individual-differences approach. In a first experiment, observers reported perception during four binocular rivalry tasks that differed in the features and retinal locations of the stimuli used. Perceptual dominance durations were highly correlated when compared between stimuli that differed in location only. Correlations were substantially weaker, however, when comparing stimuli comprised of different features. Thus, individual differences in binocular-rivalry perception partly reflect a feature-specific factor that is not shared among all variants of binocular rivalry. Our second experiment again included several binocular rivalry variants, but also a different form of bistability: moving plaid rivalry. Correlations in dominance durations between binocular rivalry variants that differed in feature content were again modest. Moreover, and surprisingly, correlations between binocular rivalry and moving plaid rivalry were of similar magnitude. This indicates a second, more general, factor underlying individual differences in binocular rivalry perception: one that is shared across binocular rivalry and moving plaid rivalry. We propose that the first, feature-specific factor corresponds to feature-tuned mechanisms involved in the treatment of interocular conflict, whereas the second, general factor corresponds to mechanisms involved in representing surfaces. These latter mechanisms would operate at a binocular level and be central to both binocular rivalry and other forms of bistability

    Temporal Characteristics of Priming of Attention Shifts Are Mirrored by BOLD Response Patterns in the Frontoparietal Attention Network

    Get PDF
    Publisher's version (útgefin grein)Priming of attention shifts involves the reduction in search RTs that occurs when target location or target features repeat. We used functional magnetic resonance imaging to investigate the neural basis of such attentional priming, specifically focusing on its temporal characteristics over trial sequences. We first replicated earlier findings by showing that repetition of target color and of target location from the immediately preceding trial both result in reduced blood oxygen level-dependent (BOLD) signals in a cortical network that encompasses occipital, parietal, and frontal cortices: lag-1 repetition suppression. While such lag-1 suppression can have a number of explanations, behaviorally, the influence of attentional priming extends further, with the influence of past search trials gradually decaying across multiple subsequent trials. Our results reveal that the same regions within the frontoparietal network that show lag-1 suppression, also show longer term BOLD reductions that diminish over the course of several trial presentations, keeping pace with the decaying behavioral influence of past target properties across trials. This distinct parallel between the across-Trial patterns of cortical BOLD and search RT reductions, provides strong evidence that these cortical areas play a key role in attentional priming.Icelandic Research Fund (Rannis, #130575-051 to M.B. and J.W.B.); the ERC (grant 643636 to A.K.); the Icelandic Research Fund (#130575-051, #152427-051 and #173947-051); and the Research Fund of the University of Iceland. Netherlands Organization for Scientific Research (grant #452.17.012 to B.M.) and Portuguese Foundation for Science and Technology (grant #IF/01405/2014 to B.M.).Peer Reviewe

    Multi-Timescale Perceptual History Resolves Visual Ambiguity

    Get PDF
    When visual input is inconclusive, does previous experience aid the visual system in attaining an accurate perceptual interpretation? Prolonged viewing of a visually ambiguous stimulus causes perception to alternate between conflicting interpretations. When viewed intermittently, however, ambiguous stimuli tend to evoke the same percept on many consecutive presentations. This perceptual stabilization has been suggested to reflect persistence of the most recent percept throughout the blank that separates two presentations. Here we show that the memory trace that causes stabilization reflects not just the latest percept, but perception during a much longer period. That is, the choice between competing percepts at stimulus reappearance is determined by an elaborate history of prior perception. Specifically, we demonstrate a seconds-long influence of the latest percept, as well as a more persistent influence based on the relative proportion of dominance during a preceding period of at least one minute. In case short-term perceptual history and long-term perceptual history are opposed (because perception has recently switched after prolonged stabilization), the long-term influence recovers after the effect of the latest percept has worn off, indicating independence between time scales. We accommodate these results by adding two positive adaptation terms, one with a short time constant and one with a long time constant, to a standard model of perceptual switching

    Deciding where to attend: Priming of pop-out drives target selection.

    No full text

    Chronic and acute biases in perceptual stabilization

    No full text
    corecore