205 research outputs found

    Формування конкурентних переваг підприємства в умовах зовнішньоекономічної діяльності

    Get PDF
    Abstract Background Whole genome sequencing has become fast, accurate, and cheap, paving the way towards the large-scale collection and processing of human genome data. Unfortunately, this dawning genome era does not only promise tremendous advances in biomedical research but also causes unprecedented privacy risks for the many. Handling storage and processing of large genome datasets through cloud services greatly aggravates these concerns. Current research efforts thus investigate the use of strong cryptographic methods and protocols to implement privacy-preserving genomic computations. Methods We propose Fhe-Bloom and Phe-Bloom, two efficient approaches for genetic disease testing using homomorphically encrypted Bloom filters. Both approaches allow the data owner to securely outsource storage and computation to an untrusted cloud. Fhe-Bloom is fully secure in the semi-honest model while Phe-Bloom slightly relaxes security guarantees in a trade-off for highly improved performance. Results We implement and evaluate both approaches on a large dataset of up to 50 patient genomes each with up to 1000000 variations (single nucleotide polymorphisms). For both implementations, overheads scale linearly in the number of patients and variations, while Phe-Bloom is faster by at least three orders of magnitude. For example, testing disease susceptibility of 50 patients with 100000 variations requires only a total of 308.31 s (σ=8.73 s) with our first approach and a mere 0.07 s (σ=0.00 s) with the second. We additionally discuss security guarantees of both approaches and their limitations as well as possible extensions towards more complex query types, e.g., fuzzy or range queries. Conclusions Both approaches handle practical problem sizes efficiently and are easily parallelized to scale with the elastic resources available in the cloud. The fully homomorphic scheme, Fhe-Bloom, realizes a comprehensive outsourcing to the cloud, while the partially homomorphic scheme, Phe-Bloom, trades a slight relaxation of security guarantees against performance improvements by at least three orders of magnitude

    Design-Based Research in der Geographiedidaktik : Kernelemente, Verlaufsmodell und forschungsmethodologische Besonderheiten anhand vier ausgewählter Forschungsprojekte

    Get PDF
    Dieser Beitrag beleuchtet den forschungsmethodologischen Ansatz des Design-Based Research (DBR) aus der fachdidaktischen Perspektive der Geographie. Das Verständnis von Kernelementen und Besonderheiten des DBR wird theoretisch diskutiert und anhand von Erkenntnissen aus vier geographiedidaktischen DBR-Projekten geschärft und konkretisiert. Argumentativ dargelegt werden die Kernelemente: Praxisproblemdefinition, Design-Prinzipien, Design-Zyklen und doppelter Output. Ein weiterentwickeltes Verlaufsmodell des DBR-Forschungsprozesses visualisiert neben dem zyklischen Verlauf die beiden Bereiche “Praxisproblem” und “doppelter Output”, welche durch die Phase des Praxistransfers miteinander verknüpft sind. Der Umgang mit DBR-spezifischen Herausforderungen wird durch die Diskussion von drei forschungsmethodologischen Besonderheiten erläutert, wobei ein Fokus auf Umsetzungsstrategien für den eben genannten Praxistransfer liegt. Abschließend wird aufgezeigt, wie die dargelegten Charakteristika von DBR handlungsleitend für weitere Forschungsprojekte sein können und damit zur Überwindung der Theorie-Praxis-Lücke im Kontext der Bildungsforschung und schulischen Praxis beitragen

    Identification of non-muscle myosin heavy chain as a substrate for Cdk5 and tool for drug screening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deregulated activation of cyclin-dependent kinase-5 (Cdk5) is implicated in neurodegenerative disorders such as Alzheimer's disease. One of the restricting factors for developing specific Cdk5 inhibitors is the lack of reproducible and well-characterized cellular in vitro assay systems.</p> <p>Methods</p> <p>HEK293 cells were transfected with Cdk5 and its activator p25 as a starting point for an assay to screen for Cdk5 kinase inhibitors. To identify suitable substrates for Cdk5 we utilized an antibody that recognizes phospho serine in a consensus motif for Cdk substrates.</p> <p>Results</p> <p>Western blot analysis of transfected cells detected a 200 kDa band that was identified, by mass spectrometry, as non-muscle myosin heavy chain, type B (NMHC-B). Phosphorylation of NMHC-B was evident only in cells that were double transfected with Cdk5/p25 and was dose-dependently inhibited by Roscovitine and other Cdk5 inhibitors. Cdk5 was found to phosphorylate NMHC-B also in the human neuroblastoma SH-SY5Y cell line.</p> <p>Conclusion</p> <p>A novel Cdk5 substrate NMHC-B was identified in this study. A cellular assay for screening of Cdk5 inhibitors was established using NMHC-B phosphorylation as a read-out in Cdk5/p25 transfected HEK293 cells. A novel Cdk5 inhibitor was also pharmacologically characterized in this assay system.</p

    Complying with Data Handling Requirements in Cloud Storage Systems

    Full text link
    In past years, cloud storage systems saw an enormous rise in usage. However, despite their popularity and importance as underlying infrastructure for more complex cloud services, today's cloud storage systems do not account for compliance with regulatory, organizational, or contractual data handling requirements by design. Since legislation increasingly responds to rising data protection and privacy concerns, complying with data handling requirements becomes a crucial property for cloud storage systems. We present PRADA, a practical approach to account for compliance with data handling requirements in key-value based cloud storage systems. To achieve this goal, PRADA introduces a transparent data handling layer, which empowers clients to request specific data handling requirements and enables operators of cloud storage systems to comply with them. We implement PRADA on top of the distributed database Cassandra and show in our evaluation that complying with data handling requirements in cloud storage systems is practical in real-world cloud deployments as used for microblogging, data sharing in the Internet of Things, and distributed email storage.Comment: 14 pages, 11 figures; revised manuscript, accepted for publication in IEEE Transactions on Cloud Computin

    Global analysis of charge exchange meson production at high energies

    Get PDF
    Many experiments that are conducted to study the hadron spectrum rely on peripheral resonance production. Hereby, the rapidity gap allows the process to be viewed as an independent fragmentation of the beam and the target, with the beam fragmentation dominated by production and decays of meson resonances. We test this separation by determining the kinematic regimes that are dominated by factorizable contributions, indicating the most favorable regions to perform this kind of experiments. In doing so, we use a Regge model to analyze the available world data of charge exchange meson production with beam momentum above 5 GeV in the laboratory frame that are not dominated by either pion or Pomeron exchanges. We determine the Regge residues and point out the kinematic regimes which are dominated by factorizable contributions

    Optical emission from SiO2-embedded silicon nanocrystals: a high pressure Raman and photoluminescence study

    Get PDF
    We investigate the optical properties of high-quality Si nanocrystals (NCs)/SiO2 multilayers under high hydrostatic pressure with Raman scattering and photoluminescence (PL) measurements. The aim of our study is to shed light on the origin of the optical emission of the Si NCs/SiO2. The Si NCs were produced by chemical-vapor deposition of Si-rich oxynitride (SRON)/SiO2 multilayers with 5- and 4-nm SRON layer thicknesses on fused silica substrates and subsequent annealing at 1150 °C, which resulted in the precipitation of Si NCswith an average size of 4.1 and 3.3 nm, respectively. From the pressure dependence of the Raman spectra we extract a phonon pressure coefficient of 8.5 ± 0.3 cm−1/GPa in both samples, notably higher than that of bulk Si (5.1 cm−1/GPa). This result is ascribed to a strong pressure amplification effect due to the larger compressibility of the SiO2 matrix. In turn, the PL spectra exhibit two markedly different contributions: a higher-energy band that redshifts with pressure, and a lower-energy band which barely depends on pressure and which can be attributed to defect-related emission. The pressure coefficients of the higher-energy contribution are (−27 ± 6) and (−35 ± 8) meV/GPa for the Si NCs with a size of 4.1 and 3.3 nm, respectively. These values are sizably higher than those of bulk Si (−14 meV/GPa). When the pressure amplification effect observed by Raman scattering is incorporated into the analysis of the PL spectra, it can be concluded that the pressure behavior of the high-energy PL band is consistent with that of the indirect transition of Si and, therefore, with the quantum-confined model for the emission of the Si NCs

    Boron-incorporating silicon nanocrystals embedded in SiO2: absende of free carriers vs. B-induced defects

    Get PDF
    Boron (B) doping of silicon nanocrystals requires the incorporation of a B-atom on a lattice site of the quantum dot and its ionization at room temperature. In case of successful B-doping the majority carriers (holes) should quench the photoluminescence of Si nanocrystals via non-radiative Auger recombination. In addition, the holes should allow for a non-transient electrical current. However, on the bottom end of the nanoscale, both substitutional incorporation and ionization are subject to significant increase in their respective energies due to confinement and size effects. Nevertheless, successful B-doping of Si nanocrystals was reported for certain structural conditions. Here, we investigate B-doping for small, well-dispersed Si nanocrystals with low and moderate B-concentrations. While small amounts of B-atoms are incorporated into these nanocrystals, they hardly affect their optical or electrical properties. If the B-concentration exceeds ~1 at%, the luminescence quantum yield is significantly quenched, whereas electrical measurements do not reveal free carriers. This observation suggests a photoluminescence quenching mechanism based on B-induced defect states. By means of density functional theory calculations, we prove that B creates multiple states in the bandgap of Si and SiO2. We conclude that non-percolated ultra-small Si nanocrystals cannot be efficiently B-doped
    corecore