4,548 research outputs found

    THE UNSYSTEMATIC SURVIVAL OF SYSTEMS: THE PARASITE, THE JOKER AND THE BRICOLEUR IN MICHEL SERRES AND CLAUDE LEVI-STRAUSS

    Get PDF
    With our increasing reliance on systems from information theory to economics, it is important to understand how systems are constructed, how they break down and how they preserve themselves. The philosopher Michel Serres in his work The Parasite showed how systems can never preserve their order in a pure manner; they always involve noise and lost signals. He explores this by employing the idea of parasitism from biology. But the problem remains of how systems maintain themselves in the face of parasitism. This paper will explore the concept of bricolage conceived by structural anthropologist Claude Levi-Strauss in his seminal work The Savage Mind. This concept can be found within a single ambiguous quotation by Serres in The Parasite, but remains undeveloped. This article will therefore develop these connections between bricolage and parasitism, and show how bricolage is important to the adaptation of any system to change

    Real-Time and Post-Processed Orbit Determination and Positioning

    Get PDF
    Novel methods and systems for the accurate and efficient processing of real-time and latent global navigation satellite systems (GNSS) data are described. Such methods and systems can perform orbit determination of GNSS satellites, orbit determination of satellites carrying GNSS receivers, positioning of GNSS receivers, and environmental monitoring with GNSS data

    Interdisciplinary Transgender Veteran Care: Development of a Core Curriculum for VHA Providers

    Get PDF
    Purpose: The Veteran\u27s Health Administration (VHA) has created a training program for interdisciplinary teams of providers on the unique treatment needs of transgender veterans. An overview of this program\u27s structure and content is described along with an evaluation of each session and the program overall. Methods: A specialty care team delivered 14 didactic courses supplemented with case consultation twice per month over the course of 7 months through video teleconferencing to 16 teams of learners. Each team, consisting of at least one mental health provider (e.g., social worker, psychologist, or psychiatrist) and one medical provider (e.g., physician, nurse, physician assistant, advanced practice nurse, or pharmacist), received training and consultation on transgender veteran care. Results: In the first three waves of learners, 111 providers across a variety of disciplines attended the sessions and received training. Didactic topics included hormone therapy initiation and adjustments, primary care issues, advocacy within the system, and psychotherapy issues. Responses were provided to 39 veteran-specific consult questions to augment learning. Learners reported an increase in knowledge plus an increase in team cohesion and functioning. As a result, learners anticipated treating more transgender veterans in the future. Conclusion: VHA providers are learning about the unique healthcare needs of transgender veterans and benefitting from the training opportunity offered through the Transgender Specialty Care Access Network-Extension of Community Healthcare Outcomes program. The success of this program in training interdisciplinary teams of providers suggests that it might serve as a model for other large healthcare systems. In addition, it provides a path forward for individual learners (both within VHA and in the community) who wish to increase their knowledge

    The Astropy Problem

    Get PDF
    The Astropy Project (http://astropy.org) is, in its own words, "a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages." For five years this project has been managed, written, and operated as a grassroots, self-organized, almost entirely volunteer effort while the software is used by the majority of the astronomical community. Despite this, the project has always been and remains to this day effectively unfunded. Further, contributors receive little or no formal recognition for creating and supporting what is now critical software. This paper explores the problem in detail, outlines possible solutions to correct this, and presents a few suggestions on how to address the sustainability of general purpose astronomical software

    The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    Get PDF
    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.Comment: Preprint to be submitted to The European Physical Journal

    Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC

    Full text link
    The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outside the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics.Comment: 36 pages, 20 figure

    Design and construction of the MicroBooNE Cosmic Ray Tagger system

    Get PDF
    The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector records many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgrounds, we have designed and constructed a TPC-external Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for High Energy Physics (LHEP), Albert Einstein center for fundamental physics, University of Bern. The system utilizes plastic scintillation modules to provide precise time and position information for TPC-traversing particles. Successful matching of TPC tracks and CRT data will allow us to reduce cosmogenic background and better characterize the light collection system and LArTPC data using cosmic muons. In this paper we describe the design and installation of the MicroBooNE CRT system and provide an overview of a series of tests done to verify the proper operation of the system and its components during installation, commissioning, and physics data-taking

    Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE

    Full text link
    The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at arXiv:1802.0870
    • …
    corecore